Background Salinity is one of the major limiting abiotic stresses that decrease crop production worldwide. To recommend genotypes for cultivation under saline stress conditions, a comprehensive understanding of the genetic basis and plant responses to this stress is needed. In the present study, a total of 20 barley genotypes were investigated to identify potential salt-tolerant genotypes, both at the early growth stage using a hydroponic system, and in adult plants under field conditions. For these purposes, the multi-trait genotype-ideotype distance index (MGIDI) was used to identify salt-tolerant barley genotypes at the seedling stage, and the weighted average of absolute scores (WAASB) index was used to identify the high-yielding and stable genotypes in adult plant stage. At the early growth stage, barley seedlings were treated with two salinity levels: 0 mM NaCl (as control conditions) and 200 mM NaCl (as stress conditions) for 30 days, and during this period different growth and physiological traits were measured. Besides, the yield performance and stability of the investigated barley genotypes were evaluated across five environments during the 2018–2020 cropping seasons. Results Salinity stress significantly decreased growth and physiological traits in all seedling plants; however, some salt-tolerant genotypes showed minimal reduction in the measured traits. Multivariate analysis grouped the measured traits and genotypes into different clusters. In the early growth stage, the G12, G14, G6, G7, and G16 were selected as the most salt-tolerant genotypes using MGIDI index. In the multi-environment trials experiment, AMMI analysis showed that grain yields of the tested barley genotypes were influenced by the environment (E), genotype (G), and GE interaction. Based on the weighted average of absolute scores of the genotype index (WAASB) and other stability statistics, G7, G8, G14, and G16 were selected as superior genotypes. Conclusion Together the MGIDI and WAASB indices revealed that three genotypes—G7, G14 and G16—can be recommended as new genetic resources for improving and stabilizing grain yield in barley programs for the moderate climate and saline regions of Iran. Our results suggest that using the MGIDI index in the early growth stage can accelerate screening nurseries in barley breeding programs. Besides, the WAASB index can be used as a useful stability measurement for identify high-yielding and stable genotypes in multi-environment trials.
The salinity tolerance of 17 breeding wheat genotypes along with three local varieties was evaluated under control and salinity stress (160 mM NaCl) conditions. At the seedling stage, shoot and root dry weights, relative water content (RWC), membrane stability index (MSI), relative chlorophyll content (SPAD index), root and shoot Na + (RN and SN), root and shoot K + (RK and SK), root and shoot K + /Na + ratios (RKN and SKN), root-to-shoot Na + translocation (RTSN), root-to-shoot K + translocation (RTSK), stomatal conductance (G S ), transpiration rate (T E ), and photosynthesis rate (P N ) were measured. Moreover, the investigated genotypes were assessed in terms of grain yield across four saline regions during the 2018-2019 cropping seasons. Salinity stress caused a signi cant reduction in the RDW, SDW, PN, G S , T E , SK, RKN, SKN, RTSN, and RTSK, but resulted in increased RN, RK, and SN. The results of AMMI analysis of variance also indicated signi cant differences among test locations, genotypes, and their interaction effects. The PCA-based biplot revealed that grain yield strongly correlated with RKN and RK. Furthermore, the correlation among P N , G S , and T E traits was strong and positive and had a positive correlation with RWC, MSI, RDW, and SPAD index. Considering our results, RK and RKN were identi ed as useful physiological tools to screen salt tolerance at the early-growth stage. According to the ranking patterns obtained by the average sum of ranks method (ASR) and grain yield, we observed that genotype number G5 had considerable physiological potential at the early-growth stage and also responded well to soil salinity at the farm; thus this genotype can be promoted for commercial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.