In this paper, an asynchronous analog-to-information conversion system is introduced for measuring the RR intervals of the electrocardiogram (ECG) signals. The system contains a modified level-crossing analog-to-digital converter and a novel algorithm for detecting the R-peaks from the level-crossing sampled data in a compressed volume of data. Simulated with MIT-BIH Arrhythmia Database, the proposed system delivers an average detection accuracy of 98.3%, a sensitivity of 98.89%, and a positive prediction of 99.4%. Synthesized in 0.13 μm CMOS technology with a 1.2 V supply voltage, the overall system consumes 622 nW with core area of 0.136 mm (2), which make it suitable for wearable wireless ECG sensors in body-sensor networks.
Abstract-In this paper, an in-depth design methodology for fully-integrated tunable low-noise amplifiers for neural recording applications is presented. In this methodology, a modified system design is proposed to optimize the area/noise/linearity performance. A novel linear pseudo-resistor with a wide range of tunability is also proposed. As a case study, a low-noise tunable and reconfigurable amplifier for neural recording applica-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.