A high efficiency dye-doped cholesteric liquid crystal (CLC) is demonstrated by optimizing the dye concentration and using an electrically tunable nematic liquid crystal (NLC) phase retarder. The state of polarization of laser emission in CLC lasers, contrary to our expectations, due to the refractive index mismatch at the boundaries is not exactly circular. A double-cell structure including a CLC laser and an adjustable NLC phase retarder with a mirror reflector on one of the inner surfaces not only purifies the polarization state of the laser output but also improves the laser efficiency by 6.7X, over the single-direction dye-doped CLC laser.
Matrix mismatching in the quantitative analysis of materials through calibration-based laser-induced breakdown spectroscopy (LIBS) is a serious problem. In this paper, to overcome the matrix mismatching, two distinct approaches named addition standardization (AS) and addition-internal combinatorial standardization (A-ICS) are demonstrated for LIBS experiments. Furthermore, in order to examine the efficiency of these methods, the concentration of calcium in ordinary garden soil without any fertilizer is individually measured by each of the two procedures. To achieve this purpose, ten standard samples with different concentrations of calcium (as the analyte) and copper (as the internal standard) are prepared in the form of cylindrical tablets, so that the soil plays the role of the matrix in all of them. The measurements indicate that the relative error of concentration compared to a certified value derived by induced coupled plasma optical emission spectroscopy is 3.97% and 2.23% for AS and A-ICS methods, respectively. Furthermore, calculations related to standard deviation indicates that A-ICS method may be more accurate than AS one.
A high efficiency band-edge cholesteric liquid crystal (CLC) laser comprising an optimal binary-dye mixture (OBD) with 62 wt% DCM and 38 wt% PM597 as the active medium is scrutinized. The measurements indicate that both the fluorescence spectrum width and the order parameter of OBD in the host of nematic liquid crystal (BL009) enhance compared with those for each individual dye. Furthermore, at the fluorescence peak, the optical efficiency of the PM597-doped CLC laser is ~ 1.5× higher than that of DCM, and the laser emission energy for OBD-doped CLC between the wavelengths 595 nm and 613 nm is even higher than that of PM597-doped CLC, so that at the maximum fluorescence of OBD, ≈ 605 nm , the improvement is over 20%.
An approach for frequency stabilization of an ambience-isolated internal-mirror He-Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23°C) and an optimal discharge current (5.5 mA) of laser tube for which the laser light power is separately maximized. To prevent the effect of fluctuation of discharge current on the laser stability, an adjustable current source is designed and fabricated so that the current is set to be optimal (5.50 ± 0.01 mA). To isolate the laser tube from the environment, the laser metallic box connected to two Peltier thermoelectric coolers is surrounded by two thermal and acoustic insulator shells. The laser has two longitudinal modes very often. Any change in the frequency of longitudinal modes at the optimal temperature is monitored by sampling the difference of longitudinal modes' intensities. Therefore, using a feedback mechanism, the current of thermoelectric coolers is so controlled that the frequency of modes stays constant on the gain profile of the laser. The frequency stability is measured equal to 1.17 9 10 -9 (*27009) for less than 1 min and 2.57 9 10 -9 (*12009) for more than 1 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.