An essential problem in real-world recommender systems is that user preferences are not static and users are likely to change their preferences over time. Recent studies have shown that the modelling and capturing the dynamics of user preferences lead to significant improvements on recommendation accuracy and, consequently, user satisfaction. In this paper, we develop a framework to capture user preference dynamics in a personalized manner based on the fact that changes in user preferences can vary individually. We also consider the plausible assumption that older user activities should have less influence on a user’s current preferences. We introduce an individual time decay factor for each user according to the rate of his preference dynamics to weigh the past user preferences and decrease their importance gradually. We exploit users’ demographics as well as the extracted similarities among users over time, aiming to enhance the prior knowledge about user preference dynamics, in addition to the past weighted user preferences in a developed coupled tensor factorization technique to provide top-K recommendations. The experimental results on the two real social media datasets—Last.fm and Movielens—indicate that our proposed model is better and more robust than other competitive methods in terms of recommendation accuracy and is more capable of coping with problems such as cold-start and data sparsity.
In real-world recommender systems, user preferences are dynamic and typically change over time. Capturing the temporal dynamics of user preferences is essential to design an efficient personalized recommender system and has recently attracted significant attention. In this paper, we consider user preferences change individually over time. Moreover, based on the intuition that social influence can affect the users' preferences in a recommender system, we propose a Temporal and Social Collective Matrix Factorization model called TSCMF for recommendation. We jointly factorize the users' rating information and social trust information in a collective matrix factorization framework by introducing a joint objective function. We model user dynamics into this framework by learning a transition matrix of user preferences between two successive time periods for each individual user. We present an efficient optimization algorithm based on stochastic gradient descent for solving the objective function. The experiments on a real-world dataset illustrate that the proposed model outperforms the competitive methods. Moreover, the complexity analysis demonstrates that the proposed model can be scaled up to large datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.