Sediment and deposition are among the main problems in dam engineering and other related fields. Because of the numerous advantages of numerical modeling, effects of different geometries of reservoirs on the flow pattern and deposition of sediments are investigated using the finite volume based Flow-3D software package. In this study, three rectangular reservoirs with different dimensional ratios are simulated using the large eddy simulation (LES) turbulence model. To validate the numerical modeling, existing experimental data is used. Results indicate that Flow-3D can accurately simulate flow and sediment deposition in the reservoirs, and the numerical data are in reasonable agreement with the experimental results. Numerical efforts showed that the amount of deposition in reservoirs is significantly dependent on the geometry. Among the modeled reservoirs, the 6 × 4 m one has the best performance. Moreover, it can be said that changing the position of the flow’s inlet and outlet of the reservoir does not have a considerable effect on increasing its efficiency.
Abstract. Nowadays, a settling tank's removal efficiency is one of the most crucial matters for all water or wastewater treatment plants (WTPs or WWTPs). The unit can affect WWTP performance and improve the provided effluent quality. In this paper, the geometrical aspects of a settling tank were numerically analyzed via tracer curves, the finite-volume method, and ANSYS CFX software in which the baffle depth and diameter of a settling tank were assessed. Firstly, a previous study was similarly remodeled to verify simulation results. The impact of tank depth variation was numerically assessed where the outcomes showed that a deeper tank could raise discharge time or the hydraulic retention time (HRT). Thus, extensive discharge time may result in less polluted effluent, degrading more solids. However, the tank should not be too deeply based on costs. Moreover, the differential effect of baffle height was analyzed and indicated that lower height is more useful for boosting the HRT. An investigation of tank diameter changes also revealed that wider diameters bring about a broader HRT.
Pipelines that are buried in ground are used for transference of water and energy sources. These lines are considered infrastructures and have a high importance. In this paper behavior of soil and pipes are simulated using the finite-element based software ABAQUS, and effect of blast wave on the amount of tension and displacement of a pipe is investigated. The simulations are run for the pipe's substance, burial depth, dimension, and also the intensity and situation of the explosion. AUTODYN software is used for evaluation of blast wave's power. Simulation results show the positive effect of increasing the pipe's dimension and burial depth on reducing the destruction caused by explosion.
<p><strong>Abstract.</strong> Nowadays, settling tank's removal efficiency is one of the most crucial matter in all Water or Wastewater Treatment Plants (WTPs or WWTPs). The unit can affect a WWTP performance and improve effluent quality provided. In this paper, geometrical aspects of a settling tank were numerically analyzed via tracer curves, finite volume method and Ansys-cfx software in which, baffle depth and diameter of a settling tank were assessed. Firstly, a previous study was similarly remodeled to verify the simulation results. The impact of tank depth variation has been numerically assessed where the outcomes showed that deeper tank could raise discharge time or Hydraulic Retention Time (HRT). Thus, extensive discharge time may result in less polluted effluent degrading more solids. However, the tank should not be considered too deep regarding economic issues. Moreover, the differential effect of baffle height was analyzed and indicated that lower height is more useful to boost HRT. Investigation of tank diameter changes also revealed that wider diameters bring broader HRT.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.