The use of cutting fluids is fundamental to machining processes, mainly when it comes to high heat generation, which is the case of grinding. Thus, lubrication and cooling provided by cutting fluids improve the final quality of the workpiece. However, cutting fluid usage provide some drawbacks concerning environmental, costs and health issues. Therefore, new methods for application and optimization of cutting fluids are being researched aiming to reduce the amount of fluid used, as well as the minimization of cutting fluid hazards. The present study analyzes the behavior of a recently proposed optimization method, up to now only tested in turning, which consists of adding water to minimum quantity lubrication (MQL). Three different proportions were tested in this study: 1/1, 1/3 and 1/5 parts of oil per parts of water. The following output variables were evaluated: surface roughness, roundness errors, grinding power and diametric wheel wear. Also, optical microscopy and microhardness measurements were conducted, in order to detect burns and surface alterations. The obtained results were also compared to conventional (flood coolant) cooling-lubrication and traditional MQL (without water). MQL with water (1/5) presented better results of surface roughness and roundness errors, when compared to traditional MQL, and the results are very close to when using flood coolant. For grinding power and wheel wear, the results for MQL with water (1/5) were the best among the tested conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.