Aclidinium bromide is a novel potent, long-acting inhaled muscarinic antagonist in development for the treatment of chronic obstructive pulmonary disease. Aclidinium showed subnanomolar affinity for the five human muscarinic receptors (M 1 -M 5 3 H]aclidinium at the M 2 receptor was shorter than at the M 3 receptor, demonstrating kinetic selectivity for the M 3 receptor. In isolated guinea pig trachea, aclidinium showed comparable potency to ipratropium and tiotropium, faster onset of action than tiotropium, and duration of action similar to tiotropium and significantly longer than ipratropium. Nebulized aclidinium inhibited bronchoconstriction induced by acetylcholine in guinea pigs in a concentrationdependent manner with an onset of action faster than tiotropium. Duration of action of aclidinium (t 1/2 ϭ 29 h) was much longer than ipratropium (8 h) but shorter than tiotropium (64 h). In dogs, aclidinium induced a smaller and more transient increase in heart rate than tiotropium at comparable supratherapeutic doses. Therefore, under these conditions, aclidinium showed a greater therapeutic index than tiotropium (4.2 versus 1.6). These results indicate that aclidinium is a potent muscarinic antagonist with a fast onset of action, a long duration of effect, and a favorable cardiovascular safety profile.Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease characterized by chronic airflow obstruction attributed to long-term exposure to inhaled noxious gases and particles, most often related to cigarette smoking that is not fully reversible after bronchodilator therapy (www.goldcopd.org) (Rabe et al., 2007). Recent projections from the World Health Organization predict that COPD will become the fourth most common cause of death by 2030 and the third most common cause of chronic disability by 2020 (Lopez et al., 2006;Mathers and Loncar, 2006). Acetylcholine released by parasympathetic nerves regulates airway constriction, mucus secretion, and vasodilation through its interaction with muscarinic receptors localized in smooth muscle, mucosal glands, pulmonary vasculature, and nerve endings of the lungs (Belmonte, 2005).There are five subtypes of the muscarinic receptors, M 1 to M 5 , that are members of the superfamily of G-protein-cou-
A number of new 1,4-benzodiazepin-2-one-based gastrin/CCK-B receptor antagonists related to the archetypal analogue L-365,260, and more closely to the recently reported compound YM022, have been synthesized and evaluated for biological activity. The compounds were screened for their ability to inhibit the binding of [125I]CCK-8 to gastrin/CCK-B receptors prepared from rat brains and that of [3H]L-364,718 to CCK-A receptors from rat pancreas, and were shown to be potent and selective ligands for the gastrin/CCK-B receptor. Functional studies in vivo demonstrated the compounds to be antagonists of the receptor as evidenced by their ability to inhibit pentagastrin-induced gastric acid secretion in anesthetized rats. More extensive evaluation in vivo included determination of ED50 values in the rat acid secretion model for selected compounds and an examination of the effect of these compounds on pentagastrin-induced gastric acid secretion in Heidenhain pouch dogs following oral and intravenous administration. Two compounds, i.e. (3R)-N-[1-[(tert-butylcarbonyl)methyl]-2,3-dihydro-2-oxo-5-(2-pyri dyl) -1H-1,4-benzodiazepin-3-yl]-N'-[3-(methylamino)phenyl]urea, 15c (YF476), and (3R)-N-[1-[(tert-Butylcarbonyl)methyl]-2,3-dihydro-2-oxo-5- (2-pyridyl)-1H-1,4-benzodiazepin-3-yl]-N'-[3-(dimethylamino)phenyl ]urea hydrochloride, 15d, showed potent dose-dependent effects in both models with the former showing excellent oral bioavailability and an ED50 of 21nmol/kg po in dogs. 15c is currently under clinical investigation for the treatment of gastro-oesophagal reflux disease (GORD).
The BRPF (bromodomain and PHD finger-containing) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Evaluation of the BRPF family as a potential drug target is at an early stage although there is an emerging understanding of a role in acute myeloid leukemia (AML). We report the optimization of fragment hit 5b to 13-d as a biased, potent inhibitor of the BRD of the BRPFs with excellent selectivity over nonclass IV BRD proteins. Evaluation of 13-d in a panel of cancer cell lines showed a selective inhibition of proliferation of a subset of AML lines. Pharmacokinetic studies established that 13-d had properties compatible with oral dosing in mouse models of disease (F 49%). We propose that NI-42 (13-d) is a new chemical probe for the BRPFs suitable for cellular and in vivo studies to explore the fundamental biology of these proteins.
The objective of this work was to discover a novel, long-acting muscarinic M(3) antagonist for the inhaled treatment of chronic obstructive pulmonary disease (COPD), with a potentially improved risk-benefit profile compared with current antimuscarinic agents. A series of novel quaternary ammonium derivatives of (3R)-quinuclidinol esters were synthesized and evaluated. On the basis of its overall profile, (3R)-3-{[hydroxy(di-2-thienyl)acetyl]oxy}-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (aclidinium bromide) emerged as a candidate for once-daily maintenance treatment of COPD. This compound is a potent muscarinic antagonist, with long duration of action in vivo, and was found to have a rapid hydrolysis in human plasma, minimizing the potential to induce class-related systemic side effects. Aclidinium bromide is currently in phase III development for maintenance treatment of patients with COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.