Hepatitis B virus (HBV) infection can result in a spectrum of outcomes from immune-mediated control to disease progression, cirrhosis, and liver cancer. The host molecular pathways that influence and contribute to these outcomes need to be defined. Using an immunocompetent mouse model of chronic HBV infection, we identified some of the host cellular and molecular factors that impact on infection outcomes. Here, we show that cellular inhibitor of apoptosis proteins (cIAPs) attenuate TNF signaling during hepatitis B infection, and they restrict the death of infected hepatocytes, thus allowing viral persistence. Animals with a liver-specific cIAP1 and total cIAP2 deficiency efficiently control HBV infection compared with WT mice. This phenotype was partly recapitulated in mice that were deficient in cIAP2 alone. These results indicate that antagonizing the function of cIAPs may promote the clearance of HBV infection.hepatitis B virus | cellular inhibitor of apoptosis proteins | cIAP1 | cIAP2 | TNF I t is estimated that 2 billion people currently living in the world have been infected with hepatitis B virus (HBV), and among these, 360 million people are chronic carriers (1). HBV causes 780,000 deaths each year and is responsible for 50% and 33% of deaths attributable to liver cancer and cirrhosis, respectively (2). The host factors and molecular pathways that impact on HBV disease and clinical outcomes are not well-understood (3). What is becoming clear is that immunosuppressive agents and particularly, biological agents, including anti-TNF therapy, can cause major flares in HBV-related disease, leading to morbidity and mortality (4, 5). Animal models and particularly, immunocompetent mouse models of persistent HBV infection have been used to dissect host-pathogen interactions that influence infection outcomes (6-8). These animal models can be used to define host cell signaling and cell death pathways that contribute to the persistence or control of HBV infection.We induced HBV infection in two mouse models to examine the relevance of host factors in controlling infection. In a model that mimics partial control of infection, we were able to determine the importance of host cell signaling pathways through the use of gene-targeted mice. By identifying the relevant host cell signaling molecules that impact on HBV clinical outcomes, it may be possible to develop therapeutics that target host cell pathways and alter the course of HBV-related disease. ResultsChronic HBV Infection Can Be Mimicked in a Mouse Model. We used a previously described method to induce HBV persistence in immunocompetent mice (6). A plasmid containing a 1.2 over length sequence of HBV genotype A was hydrodynamically injected into mice, but in contrast to the previously published protocol, we did not anesthetize animals. Using this modified technique, we did not observe any injection-associated mortality, and C57BL/6 mice showed persistently high serum HBV DNA levels over 8-12 wk (Fig. 1A). Eventually, HBV DNA levels fell in all animals along with t...
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial.
The E3 ligase ARIH2 has an unusual structure and mechanism of elongating ubiquitin chains. To understand its physiological role, we generated gene-targeted mice deficient in ARIH2. ARIH2 deficiency resulted in the embryonic death of C57BL/6 mice. On a mixed genetic background, the lethality was attenuated, with some mice surviving beyond weaning and then succumbing to an aggressive multiorgan inflammatory response. We found that in dendritic cells (DCs), ARIH2 caused degradation of the inhibitor IκBβ in the nucleus, which abrogated its ability to sequester, protect and transcriptionally coactivate the transcription factor subunit p65 in the nucleus. Loss of ARIH2 caused dysregulated activation of the transcription factor NF-κB in DCs, which led to lethal activation of the immune system in ARIH2-sufficent mice reconstituted with ARIH2-deficient hematopoietic stem cells. Our data have therapeutic implications for targeting ARIH2 function.
The stress‐activated protein kinases (SAPKs)/c‐Jun‐N‐terminal‐kinases (JNK) are members of the mitogen‐activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation‐dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis. MKK4 is a SAPK that can activate both JNK1 and JNK2; however, its role in T‐cell development and function has been controversial. Additionally, loss of either JNK1 or JNK2 has opposing effects in the generation of T‐cell immunity to viral infection and cancer. We used mice with a conditional loss of MKK4 in T cells to investigate the in vivo role of MKK4 in T‐cell development and function during lymphocytic choriomeningitis virus (LCMV) infection. We found no physiologically relevant differences in T‐cell responses or immunity to either acute or chronic LCMV in the absence of MKK4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.