It was previously reported that mRNA expression levels in the prefrontal cortex at old age start to resemble pre-adult levels. Such expression reversals could imply loss of cellular identity in the aging brain, and provide a link between aging-related molecular changes and functional decline. Here we analyzed 19 brain transcriptome age-series datasets, comprising 17 diverse brain regions, to investigate the ubiquity and functional properties of expression reversal in the human brain. Across all 19 datasets, 25 genes were consistently up-regulated during postnatal development and down-regulated in aging, displaying an “up-down” pattern that was significant as determined by random permutations. In addition, 113 biological processes, including neuronal and synaptic functions, were consistently associated with genes showing an up-down tendency among all datasets. Genes up-regulated during in vitro neuronal differentiation also displayed a tendency for up-down reversal, although at levels comparable to other genes. We argue that reversals may not represent aging-related neuronal loss. Instead, expression reversals may be associated with aging-related accumulation of stochastic effects that lead to loss of functional and structural identity in neurons.
Developmental trajectories of gene expression may reverse in their direction during ageing, a phenomenon previously linked to cellular identity loss. Our analysis of cerebral cortex, lung, liver and muscle transcriptomes of 16 mice, covering development and ageing intervals, revealed widespread but tissue-specific ageing-associated expression reversals. Cumulatively, these reversals create a unique phenomenon: mammalian tissue transcriptomes diverge from each other during postnatal development, but during ageing, they tend to converge towards similar expression levels, a process we term Divergence followed by Convergence, or DiCo. We found that DiCo was most prevalent among tissue-specific genes and associated with loss of tissue identity, which is confirmed using data from independent mouse and human datasets. Further, using publicly available single-cell transcriptome data, we showed that DiCo could be driven both by alterations in tissue cell type composition and also by cell-autonomous expression changes within particular cell types.
Gene expression tends to reverse its developmental trajectory direction in ageing, a phenomenon previously linked to cellular identity loss. Our analysis of cortex, lung, liver and muscle transcriptomes of 16 mice, covering development and ageing intervals, revealed widespread but tissue-specific ageing-associated expression reversals. Cumulatively, these reversals create a unique phenomenon: mammalian tissue transcriptomes diverge from each other during postnatal development, but during ageing, they tend to converge towards similar expression levels, a process we term divergence-convergence, or DiCo. We confirmed the DiCo pattern using data from independent mouse and human datasets. Further, using publicly available single-cell transcriptome data, we showed that DiCo could be driven both by alterations in tissue cell type composition and also by cell-autonomous expression changes within particular cell types.
The mutation accumulation theory predicts that aging is caused by accumulation of late-acting deleterious variants in the germ-line, due to weak purifying selection at old age. In accordance with this model, we and others have shown that sequence conservation among old-biased genes (with higher expression in old versus young adults) is weaker than among young-biased genes across a number of mammalian and insect species. However, questions remained regarding the source and generality of this observation. It was especially unclear whether the observed patterns were driven by tissue and cell type composition shifts or by cell-autonomous expression changes during aging. How wide this trend would extend to non-mammalian metazoan aging was also uncertain. Here we analyzed bulk tissue as well as cell type-specific RNA sequencing data from diverse animal taxa across six different datasets from five species. We show that the previously reported age-related decrease in transcriptome conservation (ADICT) is commonly found in aging tissues of non-mammalian species, including non-mammalian vertebrates (chicken brain, killifish liver and skin) and invertebrates (fruit fly brain). Analyzing cell type-specific transcriptomes of adult mice, we further detect the same ADICT trend at the single cell type level. Old-biased genes are less conserved across the majority of cell types analyzed in the lung, brain, liver, muscle, kidney, and skin, and these include both tissue-specific cell types, and also ubiquitous immune cell types. Overall, our results support the notion that aging in metazoan tissues may be at least partly shaped by the mutation accumulation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.