A comparative analysis of well renowned "Shooting Method" with another numerical method "Complementary Functions Method" (CFM) is presented for calculating eigenvalue (λ). Contrary to the shooting method hit and trial approach, CFM exploits the properties of linear ordinary differential equation (LODE). In the case of linear eigenvalue Boundary value Problem (BVP), CFM generates an algebraic equation system with one unknown "λ" and, alone root finding method is sufficient to give required eigenvalue. However, the Shooting Method create a system of algebraic equations containing two unknowns "λ" and "missing initial conditions", that demands an additional numerical technique along with root finding method. These radical differences between two approaches, sets the basis for this comparative investigation. As a case study in Linear Elastic Stability, different cases of Euler columns are investigated by finding eigenvalues for each case numerically, under both methods. Comparison is performed on the basis of results accuracy and cost effectiveness for both numerical techniques while solving linear stability problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.