Rain-induced attenuation of microwaves poses a serious challenge to signal availability beyond 10 GHz frequencies. The challenges are even more pronounced in the subtropical and tropical regions with high intensities of rain which is more accompanied with thunderstorms. Nigeria has an equatorial and tropical climate, which is identified by controlling rainfall. Rain is the significant attenuation factor of various communication signal above 10 GHz frequencies. Therefore, for effective utilization of the microwave bandwidth during rainfall, it is required to form the correlation between this attenuation effect and the bandwidth at various rainfall rate and frequencies at a particular interest location. Therefore , using propagation modelling, the point rainfall and rain effects for frequencies was concurrently considered between 11 and 40 GHz (i.e. Ku, and Ka) for satellite communication service on earth-space path at Ibadan in Oyo state , Nigeria by using rainfall data for the period of five (5) years (January 2014 to December 2019).Keywords- Rain Attenuation, Rain Rate, Bandwidth, Propagation Modelling
The progressively demand on satellite communication systems has consequently resulted in lower frequency bands getting more congested. The usage of frequency band beyond 10 GHz is in focus nowadays as a result of the rapid expansion of radio communication systems. However, Rain is the leading attenuation factor of different communication signal of frequencies beyond 10 GHz. Attenuation due to rain has a significant propagation effect that needs to be carefully considered in satellite communication system network. Rain attenuation predictions and rain rate are essential when planning microwave satellite communication links. A review of the rain rate integration time and rain attenuation models for microwave and millimeter bands satellite system is presented. Keywords: Frequency Band, Rain Attenuation, Rain Attenuation Model, Rain Rate, Satellite System
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.