Abstract-Millimeter wave (mmWave) technology integrated with heterogeneous networks (HetNets) has emerged as a new wave to overcome the thirst for higher data rates with low transmission powers and severe shortage of spectrum in the wireless industry. In this paper, we consider the uplink of a hybrid heterogeneous network with femtocells overlaid on a macrocell, and formulate a two layer game theoretic framework to maximise the energy efficiency while optimising the network resources. The outer layer non-cooperative game-theoretic approach allows each femtocell access point (FAP) to maximise the data rate of its users by selecting the frequency band either from the sub-6 GHz and the mmWave. The solution to the non-cooperative game can be obtained by using pure strategy Nash equilibrium (PSNE). The inner layer game-theoretic approach ensures the energy efficient user association method subject to the minimum rate and maximum transmission power constraints by using Lagrangian dual decomposition approach. Simulation results show that the proposed hybrid HetNet scheme exploiting the mmWave frequency band improves the sum-rate and energy efficiency in comparison to the scenario where all the networks operate at sub-6 GHz frequency band. The performance of the hybrid HetNet scheme can be further enhanced by incorporating the power control mechanism.
For the past few years, 5G heterogeneous networks (HetNets) have gain phenomenal attention in the wireless industry. In this paper, we propose a hierarchical game theoretical framework for the optimal resource allocation on the uplink of a heterogeneous network with femtocells overlaid on the edge of a macrocell. In the first game, the femtocell access points (FAPs) play a non-cooperative game to choose their access policy between open and closed in order to maximize the rate of their home subscribers. The second game of the algorithm allows macrocell user equipments (MUEs) to decide their connectivity between the FAPs and the macrocell base station (MBS) with the goal of maximizing their rates and the overall network performance; thereby, distributing intelligence and control to the users. The FAPs and the MUEs are the players of two different games that strategically decide their policies in an ordered fashion. Simulation results show that this hierarchical game approach with network-assisted user-centric design offers a significant improvement in terms of the performance of HetNets relative to an closed and only network-centric access policy schemes.
Ultra densification in heterogeneous networks (HetNets) and the advent of millimeter wave (mmWave) technology for fifth generation (5G) networks have led the researchers to redesign the existing resource management techniques. A salient feature of this activity is to accentuate the importance of computationally intelligent (CI) resource allocation schemes offering less complexity and overhead. This paper overviews the existing literature on resource management in mmWave-based HetNets with a special emphasis on CI techniques and further proposes frameworks that ensure quality-of-service requirements for all network entities. More specifically, HetNets with mmWavebased small cells pose different challenges as compared to an allmicrowave-based system. Similarly, various modes of small cell access policies and operations of base stations in dual mode, i.e., operating both mmWave and microwave links simultaneously, offer unique challenges to resource allocation. Furthermore, the use of multi-slope path loss models becomes inevitable for analysis owing to irregular cell patterns and blocking characteristics of mmWave communications. This paper amalgamates the unique challenges posed because of the aforementioned recent developments and proposes various CI-based techniques including game theory and optimization routines to perform efficient resource management.
Traffic offloading via small cells is important to realize the benefits of multi-tier heterogeneous networks (HetNets). Currently, the user association techniques are under the influence of single slope path loss model. The densification of networks and irregular cell patterns have increased the variations in both the link distances and interferences; making single slope path loss models less accurate. In this paper, we consider the downlink of a HetNet with picocells overlaid on a macrocell and propose a framework for user association with dual slope path loss model. Simulation results show that the dual slope model improves the system performance compared to the standard single slope model by offloading more traffic from macro-tier to pico-tier; the effect being more significant at higher edge user density. Furthermore, the user association is highly dependent on the path loss exponents in a dual slope model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.