House combustion is one of the main concerns for builders, designers, and property residents. Singular sensors were used for a long time in the event of detection of a fire, but these sensors can not measure the amount of fire to alert the emergency response units. To address this problem, this study aims to implement a smart fire detection system that would not only detect the fire using integrated sensors but also alert property owners, emergency services, and local police stations to protect lives and valuable assets simultaneously. The proposed model in this paper employs different integrated detectors, such as heat, smoke, and flame. The signals from those detectors go through the system algorithm to check the fire's potentiality and then broadcast the predicted result to various parties using GSM modem associated with the system. To get real-life data without putting human lives in danger, an IoT technology has been implemented to provide the fire department with the necessary data. Finally, the main feature of the proposed system is to minimize false alarms, which, in turn, makes this system more reliable. The experimental results showed the superiority of our model in terms of affordability, effectiveness, and responsiveness as the system uses the Ubidots platform, which makes the data exchange faster and reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.