Myogenesis is regulated by the coordinated expression of muscle regulatory factors, a family of transcription factors that includes MYOD, MYF5, myogenin and MRF4. Muscle regulatory factors are basic helix-loop-helix transcription factors that heterodimerize with E proteins to bind the regulatory regions of target genes. Their activity can be inhibited by members of the Inhibitor of DNA binding and differentiation (ID) family, which bind E-proteins with high affinity, thereby preventing muscle regulatory factor-dependent transcriptional responses. CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcription factor expressed in myogenic precursor cells that acts to inhibit myogenic differentiation, though the mechanism remains poorly understood. We identify Id3 as a novel C/EBPβ target gene that inhibits myogenic differentiation. Overexpression of C/EBPβ stimulates Id3 mRNA and protein expression, and is required for C/EBPβ-mediated inhibition of myogenic differentiation. Misexpression of C/EBPβ in myogenic precursors, such as in models of cancer cachexia, prevents the differentiation of myogenic precursors and we show that loss of Id3 rescues differentiation under these conditions, suggesting that the stimulation of Id3 expression by C/EBPβ is an important mechanism by which C/EBPβ inhibits myogenic differentiation.
The differentiation and fusion of myoblasts into mature myotubes are complex processes responding to multiple signaling pathways. The function of Akt/PKB is critical for myogenesis, but less is clear as to the regulation of its isoform-specific expression. Bexarotene is a drug already used clinically to treat cancer, and it has the ability to enhance the commitment of embryonic stem cells into skeletal muscle lineage. Whereas bexarotene regulates fundamental biological processes through retinoid X receptor (RXR)-mediated gene expression, molecular pathways underlying its positive effects on myogenesis remain unclear. In this study, we have examined the signaling pathways that transmit bexarotene action in the context of myoblast differentiation. We show that bexarotene promotes myoblast differentiation and fusion through the activation of RXR and the regulation of Akt/PKB isoform-specific expression. Interestingly, bexarotene signaling appears to correlate with residuespecific histone acetylation and is able to counteract the detrimental effects of cachectic factors on myogenic differentiation. We also signify an isoform-specific role for Akt/PKB in RXRselective signaling to promote and to retain myoblast differentiation. Taken together, our findings establish the viability of applying bexarotene in the prevention and treatment of musclewasting disorders, particularly given the lack of drugs that promote myogenic differentiation available for potential clinical applications. Furthermore, the model of bexarotene-enhanced myogenic differentiation will provide an important avenue to identify additional genetic targets and specific molecular interactions that we can study and apply for the development of potential therapeutics in muscle regeneration and repair.
BackgroundPostnatal growth and repair of skeletal muscle relies upon a population of quiescent muscle precursor cells, called satellite cells that can be activated to proliferate and differentiate into new myofibers, as well as self-renew to replenish the satellite cell population. The balance between differentiation and self-renewal is critical to maintain muscle tissue homeostasis, and alterations in this equilibrium can lead to chronic muscle degeneration. The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is expressed in Pax7+ satellite cells of healthy muscle and is downregulated during myoblast differentiation. Persistent expression of C/EBPβ upregulates Pax7, inhibits MyoD, and blocks myogenic differentiation.MethodsUsing genetic tools to conditionally abrogate C/EBPβ expression in Pax7+ cells, we examined the role of C/EBPβ in self-renewal of satellite cells during muscle regeneration.ResultsWe find that loss of C/EBPβ leads to precocious differentiation at the expense of self-renewal in primary myoblast and myofiber cultures. After a single muscle injury, C/EBPβ-deficient satellite cells fail to self-renew resulting in a reduction of satellite cells available for future rounds of regeneration. After a second round of injury, muscle regeneration is impaired in C/EBPβ conditional knockout mice compared to wild-type control mice. We find that C/EBPβ can regulate Notch2 expression and that restoration of Notch activity in myoblasts lacking C/EBPβ prevents precocious differentiation.ConclusionsThese findings demonstrate that C/EBPβ is a novel regulator of satellite cell self-renewal during muscle regeneration acting at least in part through Notch2.
Regeneration of skeletal muscle depends on resident muscle stem cells called satellite cells that in healthy, uninjured muscle remain quiescent (noncycling). After activation and expansion of satellite cells postinjury, satellite cell numbers return to uninjured levels and return to mitotic quiescence. Here, we show that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) is required to maintain quiescence of satellite cells in uninjured muscle. We show that C/EBPβ is expressed in quiescent satellite cells in vivo and upregulated in noncycling myoblasts in vitro. Loss of C/EBPβ in satellite cells promotes their premature exit from quiescence resulting in spontaneous activation and differentiation of the stem cell pool. Forced expression of C/EBPβ in myoblasts inhibits proliferation by upregulation of 28 quiescence-associated genes. Furthermore, we find that caveolin-1 is a direct transcriptional target of C/EBPβ and is required for cell cycle exit in muscle satellite cells expressing C/EBPβ. The induction of mitotic quiescence is considered necessary for the long-term maintenance of adult stem cell populations with dysregulation driving increased differentiation of progenitors and depletion of the stem cell pool. Our findings place C/EBPβ as an important transcriptional regulator of muscle satellite cell quiescence.
Background CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor whose high expression in human cancers is associated with tumour aggressiveness and poor outcomes. Most advanced cancer patients will develop cachexia, characterized by loss of skeletal muscle mass. In response to secreted factors from cachexia-inducing tumours, C/EBPβ is stimulated in muscle, leading to both myofibre atrophy and the inhibition of muscle regeneration. Involved in the regulation of immune responses, C/EBPβ induces the expression of many secreted factors, including cytokines. Because tumour-secreted factors drive cachexia and aggressive tumours have higher expression of C/EBPβ, we examined a potential role for C/EBPβ in the expression of tumour-derived cachexia-inducing factors. Methods We used gain-of-function and loss-of-function approaches in vitro and in vivo to evaluate the role of tumour C/EBPβ expression on the secretion of cachexia-inducing factors. ResultsWe report that C/EBPβ overexpression up-regulates the expression of 260 secreted protein genes, resulting in a secretome that inhibits myogenic differentiation (À31%, P < 0.05) and myotube maturation [À38% (fusion index) and À25% (myotube diameter), P < 0.05]. We find that knockdown of C/EBPβ in cachexia-inducing Lewis lung carcinoma cells restores myogenic differentiation (+25%, P < 0.0001) and myotube diameter (+90%, P < 0.0001) in conditioned medium experiments and, in vivo, prevents muscle wasting (À51% for small myofibres vs. controls, P < 0.01; +140% for large myofibres, P < 0.01). Conversely, overexpression of C/EBPβ in non-cachectic tumours converts their secretome into a cachexia-inducing one, resulting in reduced myotube diameter (À41%, P < 0.0001, EL4 model) and inhibition of differentiation in culture (À26%, P < 0.01, EL4 model) and muscle wasting in vivo (+98% small fibres, P < 0.001; À76% large fibres, P < 0.001). Comparison of the differently expressed transcripts coding for secreted proteins in C/EBPβ-overexpressing myoblasts with the secretome from 27 different types of human cancers revealed ~18% similarity between C/EBPβ-regulated secreted proteins and those secreted by highly cachectic tumours (brain, pancreatic, and stomach cancers). At the protein level, we identified 16 novel secreted factors that are present in human cancer secretomes and are up-regulated by C/EBPβ. Of these, we tested the effect of three factors (SERPINF1, TNFRSF11B, and CD93) on myotubes and found that all had atrophic potential (À33 to À36% for myotube diameter, P < 0.01). Conclusions We find that C/EBPβ is necessary and sufficient to induce the secretion of cachexia-inducing factors by cancer cells and loss of C/EBPβ in tumours attenuates muscle atrophy in an animal model of cancer cachexia. Our findings establish C/EBPβ as a central regulator of cancer cachexia and an important therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.