In the literature, it is well established that regular physical exercise is a powerful strategy to promote brain health and to improve cognitive performance. However, exact knowledge about which exercise prescription would be optimal in the setting of exercise–cognition science is lacking. While there is a strong theoretical rationale for using indicators of internal load (e.g., heart rate) in exercise prescription, the most suitable parameters have yet to be determined. In this perspective article, we discuss the role of brain-derived parameters (e.g., brain activity) as valuable indicators of internal load which can be beneficial for individualizing the exercise prescription in exercise–cognition research. Therefore, we focus on the application of functional near-infrared spectroscopy (fNIRS), since this neuroimaging modality provides specific advantages, making it well suited for monitoring cortical hemodynamics as a proxy of brain activity during physical exercise.
When brain activity is measured by neuroimaging, the canonical hemodynamic response (increase in oxygenated hemoglobin ([O2Hb]) and decrease in deoxygenated hemoglobin ([HHb]) is not always seen in every subject. The reason for this intersubject-variability of the responses is still not completely understood. This study is performed with 32 healthy subjects, using the systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach. We investigate the intersubject variability of hemodynamic and systemic physiological responses, due to a verbal fluency task (VFT) under colored light exposure (CLE; blue and red). Five and seven different hemodynamic response patterns were detected in the subgroup analysis of the blue and red light exposure, respectively. We also found that arterial oxygen saturation and mean arterial pressure were positively correlated with [O2Hb] at the prefrontal cortex during the CLE-VFT independent of the color of light and classification of the subjects. Our study finds that there is substantial intersubject-variability of cerebral hemodynamic responses, which is partially explained by subject-specific systemic physiological changes induced by the CLE-VFT. This means that both subgroup analyses and the additional assessment of systemic physiology are of crucial importance to achieve a comprehensive understanding of the effects of a CLE-VFT on human subjects.
Significance: Our study reveals that frontal cerebral oxygenation asymmetry (FCOA), i.e. a difference in the oxygenation between the right and left prefrontal cortex (PFC), is a real phenomenon in healthy human subjects at rest. Aim: To investigate FCOA, we performed a study with 134 healthy right-handed subjects with the systemic physiology augmented functional near infrared spectroscopy (SPA-fNIRS) approach. Approach: Subjects were measured 2 to 4 times on different days resulting in an unprecedented number of 518 single measurements of the absolute values of tissue oxygen saturation (StO 2) and total hemoglobin concentration ([tHb]) of the right and left PFC. Measurements were performed with frequency-domain functional near-infrared spectroscopy. In addition, the cardiorespiratory parameters were measured simultaneously. Results: We found that (i) subjects showed an FCOA (higher StO 2 on the right PFC), but not for tHb; (ii) intrasubject variability was excellent for both StO 2 and tHb, and fair for FCOA; (iii) StO 2 correlated significantly with blood CO 2 concentration, [tHb] with heart rate, respiration rate (RR), and the pulse-respiration quotient (PRQ), and FCOA with RR and PRQ; (iv) FCOA and StO 2 were dependent on season and time of day, respectively; (v) FCOA was negatively correlated with the room temperature; and (vi) StO 2 and tHb were not correlated with the subjects mood but with their chronotype, whereas FCOA was not dependent on the chronotype. Conclusion: Our study demonstrates that FCOA is real, and it provides unique insights into this remarkable phenomenon.
Light evokes robust visual and nonvisual physiological and psychological effects in humans, such as emotional and behavioral responses, as well as changes in cognitive brain activity and performance. The aim of this study was to investigate how colored light exposure (CLE) and a verbal fluency task (VFT) interact and affect cerebral hemodynamics, oxygenation, and systemic physiology as determined by systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). 32 healthy adults (17 female, 15 male, age: 25.5 ± 4.3 years) were exposed to blue and red light for 9 min while performing a VFT. Before and after the CLE, subjects were in darkness. We found that this long-term CLE-VFT paradigm elicited distinct changes in the prefrontal cortex and in most systemic physiological parameters. The subjects’ performance depended significantly on the type of VFT and the sex of the subject. Compared to red light, blue evoked stronger responses in cerebral hemodynamics and oxygenation in the visual cortex. Color-dependent changes were evident in the recovery phase of several systemic physiological parameters. This study showed that the CLE has effects that endure at least 15 min after cessation of the CLE. This underlines the importance of considering the persistent influence of colored light on brain function, cognition, and systemic physiology in everyday life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.