BackgroundDespite some successes with checkpoint inhibitors for treating cancer, most patients remain refractory to treatment, possibly due to the inhibitory nature of the tumor stroma that impedes the function and entry of effector cells. We devised a new technique of combining immunotherapy with radiotherapy (XRT), more specifically low-dose XRT, to overcome the stroma and maximize systemic outcomes.MethodsWe bilaterally established 344SQ lung adenocarcinoma tumors in 129Sv/Ev mice. Primary and secondary tumors were irradiated with either high-dose or low-dose of XRT with systemic anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte associated protein 4 administration. Survival and tumor growth were monitored for the various groups, and secondary tumors were phenotyped by flow cytometry for immune populations. Tumor growth factor-beta (TGF-β) cytokine levels were assessed locally after low-dose XRT, and specific immune-cell depletion experiments were conducted to identify the major contributors to the observed systemic antitumor effect.ResultsThrough our preclinical and clinical studies, we observed that when tumor burden was high, there was a necessity of combining high-dose XRT to ‘prime’ T cells at the primary tumor site, with low-dose XRT directed to secondary (metastatic) tumors to ‘modulate the stroma’. Low-dose XRT improved the antitumor outcomes of checkpoint inhibitors by favoring M1 macrophage polarization, enhancing natural killer (NK) cell infiltration, and reducing TGF-β levels. Depletion of CD4+ T cells and NK cells abrogated the observed antitumor effect.ConclusionOur data extend the benefits of low-dose XRT to reprogram the tumor environment and improve the infiltration and function of effector immune cells into secondary tumors.
In recent decades, there has been substantial growth in our understanding of the immune system and its role in tumor growth and overall survival. A central finding has been the cross-talk between tumor cells and the surrounding environment or stroma. This tumor stroma, comprised of various cells, and extracellular matrix (ECM), has been shown to aid in suppressing host immune responses against tumor cells. Through immunosuppressive cytokine secretion, metabolic alterations, and other mechanisms, the tumor stroma provides a complex network of safeguards for tumor proliferation. With recent advances in more effective, localized treatment, radiation therapy (XRT) has allowed for strategies that can effectively alter and ablate tumor stromal tissue. This includes promoting immunogenic cell death through tumor antigen release to increasing immune cell trafficking, XRT has a unique advantage against the tumoral immune evasion mechanisms that are orchestrated by stromal cells. Current studies are underway to elucidate pathways within the tumor stroma as potential targets for immunotherapy and chemoradiation. This review summarizes the effects of tumor stroma in tumor immune evasion, explains how XRT may help overcome these effects, with potential combinatorial approaches for future treatment modalities.
Introduction: Although much progress has been made in the last decade(s) toward development of effective cancer vaccines, there are still important obstacles to therapeutic successes. New generations of cancer vaccines will benefit from a combination adjuvant approach that targets multiple branches of the immune response. Areas covered: Herein we describe how combinatorial adjuvant strategies can help overcome important obstacles to cancer vaccine development, including antigen immunogenicity and tumor immune suppression. Tumor antigens may be both tolerogenic and may utilize active mechanisms to suppress host immunity, including downregulation of MHC molecules to evade recognition and upregulation of immune inhibitory receptors, to subvert an effective immune response. The current cancer vaccine literature was surveyed to identify advancements in the understanding of the biological mechanisms underlying poor antigen immunogenicity and tumor immune evasion, as well as adjuvant strategies designed to overcome them. Expert commentary: Poor immunogenicity of tumor antigens and tumor immune evasion mechanisms make the design of cancer vaccines challenging. Growing understanding of the tumor microenvironment and associated immune responses indicate the importance of augmenting not only the effector response, but also overcoming the endogenous regulatory response and tumor evasion mechanisms. Therefore, new vaccines will benefit from multi-juvanted approaches that simultaneously stimulate immunity while preventing inhibition.
Background Preclinical evidence suggests that low-dose radiation may overcome the inhibitory effects of the tumor stroma and improve a tumor’s response to immunotherapy, when combined with high-dose radiation to another tumor. The aim of this study was to evaluate tumor responses to this combination in a clinical setting. Methods A post-hoc analysis of 3 ongoing immunoradiation trials was performed. Twenty-six (of 155) patients received low-dose radiation (1–20 Gy total), either as scatter from high-dose radiation or from intentional treatment of a second isocenter with low-dose radiation, were evaluated for response. The low-dose lesions were compared to lesions that received no radiation (< 1 Gy total). Response rates, both defined as complete and partial responses as defined by RECIST criteria were used to compare lesion types. Results The 26 patients had a total of 83 lesions for comparison (38 receiving low-dose, 45 receiving no-dose). The average dose given to low-dose lesions was 7.3 Gy (1.1–19.4 Gy), and the average time to response was 56 days. Twenty-two out of 38 (58%) low-dose lesions met the PR/CR criteria for RECIST compared with 8 out of 45 (18%) no-dose lesions ( P = 0.0001). The median change for longest diameter size for low-dose lesions was − 38.5% compared to 8% in no-dose lesions ( P < 0.0001). Among the low-dose lesions that had at least one no-dose lesion within the same patient as a control (33 and 45 lesions respectively), 12 low-dose lesions (36%) responded without a corresponding response in their no-dose lesions; Conversely, two (4%) of the no-dose lesions responded without a corresponding response in their low-dose lesion ( P = 0.0004). Conclusions Low-dose radiation may increase systemic response rates of metastatic disease treated with high-dose radiation and immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0718-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.