Energy expenses are becoming an increasingly important fraction of data center operating costs. At the same time, the energy expense per unit of computation can vary significantly between two different locations. In this paper, we characterize the variation due to fluctuating electricity prices and argue that existing distributed systems should be able to exploit this variation for significant economic gains. Electricity prices exhibit both temporal and geographic variation, due to regional demand differences, transmission inefficiencies, and generation diversity. Starting with historical electricity prices, for twenty nine locations in the US, and network traffic data collected on Akamai's CDN, we use simulation to quantify the possible economic gains for a realistic workload. Our results imply that existing systems may be able to save millions of dollars a year in electricity costs, by being cognizant of locational computation cost differences.
This paper presents a new class of models for predicting air traffic delays. The proposed models consider both temporal and spatial (that is, network) delay states as explanatory variables, and use Random Forest algorithms to predict departure delays 2-24 hours in the future. In addition to local delay variables that describe the arrival or departure delay states of the most influential airports and links (origin-destination pairs) in the network, new network delay variables that characterize the global delay state of the entire National Airspace System at the time of prediction are proposed. The paper analyzes the performance of the proposed prediction models in both classifying delays as above or below a certain threshold, as well as predicting delay values. The models are trained and validated on operational data from 2007 and 2008, and are evaluated using the 100 most-delayed links in the system. The results show that for a 2-hour forecast horizon, the average test error over these 100 links is 19% when classifying delays as above or below 60 minutes. Similarly, the average over these 100 links of the median test error is found to be 21 minutes when predicting departure delays for a 2-hour forecast horizon. The effects of changes in the classification threshold and forecast horizon on prediction performance are studied.
The efficient operation of airports, and runways in particular, is critical to the throughput of the air transportation system as a whole. Scheduling arrivals and departures at runways is a complex problem that needs to address diverse and often competing considerations of efficiency, safety, and equity among airlines. One approach to runway scheduling that arises from operational and fairness considerations is that of constrained position shifting (CPS), which requires that an aircraft's position in the optimized sequence not deviate significantly from its position in the first-come-first-served sequence. This paper presents a class of scalable dynamic programming algorithms for runway scheduling under constrained position shifting and other system constraints. The results from a prototype implementation, which is fast enough to be used in real time, are also presented.
Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence.We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships amang aircraft that arise either from a i r h e preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.