Geographical knowledge resources or gazetteers that are enriched with local information have the potential to add geographic precision to information retrieval. We have identified sources of novel local gazetteer entries in crowd-sourced OpenStreetMap and Wikimapia geotags that include geo-coordinates. We created a fuzzy match algorithm using machine learning (SVM) that checks both for approximate spelling and approximate geocoding in order to find duplicates between the crowd-sourced tags and the gazetteer in effort to absorb those tags that are novel. For each crowd-sourced tag, our algorithm generates candidate matches from the gazetteer and then ranks those candidates based on word form or geographical relations between each tag and gazetteer candidate. We compared a baseline of edit distance for candidate ranking to an SVM-trained candidate ranking model on a city level location tag match task. Experiment results show that the SVM greatly outperforms the baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.