Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies to control biofilms with widespread applications in industry as well as medicine.
The catheterized urinary tract provides ideal conditions for the development of biofilm populations. Catheter-associated urinary tract infections (CAUTIs) are recalcitrant to existing antimicrobial treatments; therefore, established biofilms are not eradicated completely after treatment and surviving biofilm cells will carry on the infection. Cis-2-decenoic acid (CDA), an unsaturated fatty acid, is capable of inhibiting biofilm formation by Pseudomonas aeruginosa and of inducing the dispersion of established biofilms by multiple types of micro-organisms. Here, the ability of CDA to induce dispersal in pre-established single-and dual-species biofilms formed by Escherichia coli and Klebsiella pneumoniae was measured by using both semi-batch and continuous cultures bioassays. Removal of the biofilms by combined CDA and antibiotics (ciprofloxacin or ampicillin) was evaluated using microtitre plate assays (crystal violet staining). The c.f.u. counts were determined to assess the potential of combined CDA treatments to kill and eradicate preestablished biofilms formed on catheters. The effects of combined CDA treatments on biofilm surface area and bacteria viability were evaluated using fluorescence microscopy, digital image analysis and live/dead staining. To investigate the ability of CDA to prevent biofilm formation, single and mixed cultures were grown in the presence and absence of CDA. Treatment of preestablished biofilms with only 310 nM CDA resulted in at least threefold increase in the number of planktonic cells in all cultures tested. Whilst none of the antibiotics alone exerted a significant effect on c.f.u. counts and percentage of surface area covered by the biofilms, combined CDA treatments led to at least a 78 % reduction in biofilm biomass in all cases. Moreover, most of the biofilm cells remaining on the surface were killed by antibiotics. The addition of 310 nM CDA significantly prevented biofilm formation by the tested micro-organisms, even within mixed cultures, indicating the ability of CDA to inhibit biofilm formation by other types of bacteria in addition to Pseudomonas aeruginosa. These findings suggested that the biofilm-preventive characteristics of CDA make it a noble candidate for inhibition of biofilm-associated infections such as CAUTIs, which paves the way toward developing new strategies to control biofilms in clinical as well as industrial settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.