The image segmentation problem is one of the most studied problems because it helps in several areas. In this paper, the authors propose new algorithms to resolve two problems, namely cluster detection and centers initialization. The authors opt to use statistical methods to automatically determine the number of clusters and the fuzzy sets theory to start the algorithm with a near optimal configuration. They use the image histogram information to determine the number of clusters and a cooperative approach involving three metaheuristics, genetic algorithm (GA), firefly algorithm (FA). and biogeography-based optimization algorithm (BBO), to detect the clusters centers in the initialization step. The experimental study shows that, first, the proposed solution determines a near optimal initial clusters centers set leading to good image segmentation compared to well-known methods; second, the number of clusters determined automatically by the proposed approach contributes to improve the image segmentation quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.