This article deals with the problem of finding closed analytical formulae for generalized linearization coefficients for Jacobi polynomials. By considering some special cases we obtain a reduction formula using for this purpose symbolic computation, in particular Zeilberger's and Petkovsek's algorithms.
In this paper, we use operational rules associated with three operators corresponding to a generalized Hermite polynomials introduced by Szegö to derive, as far as we know, new proofs of some known properties as well as new expansions formulae related to these polynomials.
We consider the problem of finding explicit formulae, recurrence relations and sign properties for both connection and linearization coefficients for generalized Hermite polynomials. The most computations are carried out by the computer algebra system Maple using appropriate algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.