Renewable energies are increasingly used around the world to replace fossil energy resources such as gas, coal, and oil sources in order to reduce greenhouse gases. Ecoindustrial parks promote the use and sharing of renewable energy sources between factories in a collective self-consumption framework. This article presents a new strategy of photovoltaic self-consumption in an eco-industrial park, that combines collective and individual self-consumption. This strategy has been compared with the classical configuration of self-consumption, in which factories do not share a common photovoltaic installation. Two mathematical models have been proposed and solved for these two configurations, the results show that the new strategy is more efficient than the classical configuration of individual self-consumption.
By 2050, the European Union plans to make Europe the first carbon-neutral continent and a global leader in climate-green industries. Recently, many decisions have been taken in the world to ensure the energy transition from fossil fuel to renewable energy. The creation of renewable energy communities (REC) is among the solutions used to increase this transition. This study presents 16 different configurations for energy self-consumption in RECs containing different industrial factories. One mathematical model is proposed for each configuration, and they have been solved according to different criteria. The comparisons are made between these configurations according to economic, environmental, technical, and social criteria. Then, four multi-criteria decision-making (MCDM) methods are used to choose the best configurations considering all the criteria. For this purpose, the achieved results from the mathematical models are used as input for the MCDM methods. The findings demonstrate that the most effective configurations combine both individual and collective self-consumption. Furthermore, the inclusion of collective production results in multiple advantages, including a 64.71% rise in economic gains, a 26.95% decrease in CO2 emissions, a 21.39% improvement in self-sufficiency, and a significant increase in job creation by 175.24%. In addition, incorporating storage enables a substantial rise in the degree of self-sufficiency, leading to reduced reliance on the power grid and consequent reduction in CO2 emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.