The present paper describes the formulation of a new moderately thick plate bending triangular finite element based on Mindlin–Reissner plate theory. It is called a Great Triangular Moderately Thick Plate Finite Element, or GTMTPFE. The formulation is based on the strain approach, on solution of Airy’s function and on the analytical integration in the construction of the stiffness matrix. The strengths associated with this approach consist of: • automatic verification of equilibrium conditions and kinematic compatibility conditions, • the enrichment of the degrees of the interpolation polynomials of displacements, strains and constraints (refinement p), • the consideration distortions sections related to Poisson effects, • the treatment of blocking phenomena related to transverse shear. In general, this approach results in a competitive, robust and efficient new moderately thick plate finite element. This is visible, on the one hand, through its stability against patch tests (constant twists, state of constants moments, transverse shear locking phenomenon, isotropy test). This is visible, through its good response to the patch tests to which it is subjected (constant torsions, state of constant moments, phenomenon of blocking in transverse shears, isotropy test). As has excellent convergence to the reference solution. Thus, it exhibits better performance behavior than other existing plate elements in the literature, particularly for moderately thick plates and for thin plates (L/h ratio greater than 4).
A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at nonlinear behaviour under monotonic and cyclical loading is presented. The non-linearity material is characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, the behaviour of cracked concrete and the interaction effect between materials represented by the post-cracking field. These parameters are taken into consideration in this paper to examine the response of the reinforced concrete structures at the non-linear behaviour. Two examples of application are presented. The numerical results obtained, are in a very good agreement with available experimental data and other numerical models of the literature.Résumé. Une Modélisation bidimensionnelle par éléments finis multicouches du comportement endommageant des structures en béton armé sous charge monotone et cyclique est présentée. La non linéarité matérielle est caractérisée par plusieurs phénomène tels que : la non-linéarité physique des matériaux béton et acier, le comportement du béton fissuré, l'effet d'interaction entre les matériaux représentée par le domaine post-fissuration. Ces paramètres sont pris en considération dans cet article pour examiner la réponse des structures en béton armé à comportement non linéaire. Deux exemples d'applications sont présentés. Les résultats numériques obtenus, sont en concordance très favorable avec ceux obtenus par l'expérience et d'autres modèles numériques de la littérature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.