The objective of this study was to investigate the effect of UV irradiation on the fatigue life of a bulk semicrystalline polymer. Low-density polyethylene samples exposed to different UV irradiation doses were fatigue tested. Fatigue indicator based on dissipated energy per cycle was found to present the best correlation with the experimental fatigue results. A master curve unifying the experimental fatigue results for as-received and UVaged materials was obtained when subtracting the dissipated energy threshold from the total dissipated energy. Finally, the evolution of the damage with cyclic loading was analyzed and preliminary modeling was attempted.
Abstract. Polymers operating in various weathering conditions must be assessed for lifetime performance. Particularly, ultraviolet (UV) radiations alters the chemical structure and therefore affect the mechanical and fatigue properties. The UV irradiation alters the polymer chemical structure, which results into a degradation of the mechanical and fatigue behavior of the polymer. The polymer properties degradation due to UV irradiation is the result of a competitive process of chain scission versus post-crosslinking. Although few studied investigated the effect of UV irradiation on the mechanical behaviour of thermoplastics, fewer examined the UV irradiation effect on the fatigue life of polymers. This study focuses on investigating the effect of UV irradiation on the fatigue properties of bulk semi-crystalline polymer; the low density Polyethylene (LDPE). Tensile specimens were exposed to different dose values of UV irradiation then subjected to fatigue loading. The fatigue tests were achieved under constant stress amplitude at a frequency of 1Hz. The results show an important decrease of the fatigue limit with increasing absorbed UV irradiation dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.