It is still unclear whether the exposure to electromagnetic fields (EMFs) generated by mobile phone radiation is directly linked to cancer. We examined the biological effects of an EMF at 835 MHz, the most widely used communication frequency band in Korean CDMA mobile phone networks, on bacterial reverse mutation (Ames assay) and DNA stability (in vitro DNA degradation). In the Ames assay, tester strains alone or combined with positive mutagen were applied in an artificial mobile phone frequency EMF generator with continuous waveform at a specific absorption rate (SAR) of 4 W/kg for 48 h. In the presence of the 835-MHz EMF radiation, incubation with positive mutagen 4-nitroquinoline-1-oxide and cumene hydroxide further increased the mutation rate in Escherichia coli WP2 and TA102, respectively, while the contrary results in Salmonella typhimurium TA98 and TA1535 treated with 4-nitroquinoline-1-oxide and sodium azide, respectively, were shown as antimutagenic. However, these mutagenic or co-mutagenic effects of 835-MHz radiation were not significantly repeated in other relevant strains with same mutation type. In the DNA degradation test, the exposure to 835-MHz EMF did not change the rate of degradation observed using plasmid pBluescript SK(+) as an indicator. Thus, we suggest that 835-MHz EMF under the conditions of our study neither affected the reverse mutation frequency nor accelerated DNA degradation in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.