(1) Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic pathogen that causes endocarditis, pneumonia, and skin diseases in humans and livestock. (2) Methods: The antibacterial effect of the total flavonoid against MRSA (ATCC43300) extracted from the Agrimonia pilosa Ledeb. (A. pilosa Ledeb) was evaluated by the microdilution method. The oxidative stresses in MRSA were evaluated by the levels of intracellular hydrogen peroxide (H2O2), reactive oxygen species (ROS), and oxidative stress-related genes. The DNA oxidative damage was tested by the 8-hydroxy-2′-deoxyguanosine (8-OHdG) and DNA gel electrophoresis. The differentially expressed proteins were determined by the method of SDS-PAGE and NanoLC-ESI-MS/MS, while the mRNAs of differential proteins were determined by Real-Time PCR. The changes of ultra-structures in MRSA were observed by Transmission Electron Microscope (TEM). (3) Results: The minimum inhibitory concentration (MIC) of the total flavonoid against MRSA was recorded as 62.5 μg/mL. After treatment with the total flavonoid, the levels of intracellular H2O2 and ROS were increased and the gene expressions against oxidative stress (SodA, katA, TrxB) were decreased (p < 0.01), while the gene expression for oxidative stress (PerR) was increased (p < 0.01). The level of intracellular 8-OHdG in MRSA was increased (p < 0.01) and the DNA was damaged. The results of TEM also showed that the total flavonoid could destroy the ultra-structures in the bacteria. (4) Conclusions: The total flavonoid extracted from the A. pilosa Ledeb can induce the oxidative stress that disturbed the energy metabolism and protein synthesis in MRSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.