The frequency organization in the inferior colliculus of neonatally-deafened rats was investigated using electrical stimulation of the cochlea and immunoreactivity for Fos as a marker of neuronal activity. An electrode implanted either at the base or at the apex of the right cochlea delivered a unique 45-min stimulation at two different level intensities and at two time points, i.e. either at 4 weeks or at 4 months. In 4-week-old rats stimulated at 5x threshold, a site-for-site organization was observed since basal or apical stimulation induced a strong labelling in the ventro-medial or in the dorsolateral part of the left inferior colliculus, respectively. In 4-month-old rats, stimulation of the base induced an extremely weak Fos labelling without any specific location in the left inferior colliculus while stimulation of the apex induced a diffuse labelling with two discrete bands being distinguishable in the left inferior colliculus. In 4-week-old rats stimulated at 15x threshold, basal stimulation elicited a diffuse Fos-like immunoreactivity in the left inferior colliculus while apical stimulation yielded a response restricted to the dorsal part of the left inferior colliculus. In 4-month-old rats, no response was detected in the left inferior colliculus after stimulation of the basal part of the cochlea. Stimulation of the apex could still induce a labelling in the dorsolateral left inferior colliculus. Thus, the inferior colliculus exhibits an adult-like tonotopic organization early on independently of any acoustic stimulation. Prolonged absence of auditory input dramatically alters this organization in the inferior colliculus, especially for high frequencies. From a clinical standpoint, these results could argue for early implantation in deaf children.
Stenotrophomonas maltophilia is an opportunistic pathogen that is closely associated with high morbidity and mortality in debilitated and immunocompromised individuals. Therefore, to investigate the pathogenesis mechanism is urgently required. However, there are very few studies to evaluate the functional properties of outer membrane protein, which may contribute to the pathogenesis in S. maltophilia. In this study, three abundant proteins in the outer membrane fraction of S. maltophilia were identified by liquid chromatography-tandem mass spectrometry as OmpW1, MopB, and a hypothetical protein. MopB, a member of the OmpA family, was firstly chosen for functional investigation in this study because many OmpA-family proteins are known to be involved in pathogenesis and offer potential as vaccines. Membrane fractionation analyses demonstrated that MopB was indeed the most abundant outer membrane protein (OMP) in S. maltophilia. For functional studies, the mopB mutant of S. maltophilia (SmMopB) was constructed by insertional mutation. MopB deficiency resulted in a change in the protein composition of OMPs and altered the architecture of the outer membrane. The SmMopB strain exhibited reduced cytotoxicity toward L929 fibroblasts and was more sensitive to numerous stresses, including human serum, sodium dodecyl sulfate, and hydrogen peroxide compared with wildtype S. maltophilia. These results suggest that MopB may be a good candidate for the design of vaccines or anti-MopB drugs for controlling serious nosocomial infections of multidrug-resistant S. maltophilia, especially in immunosuppressed patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.