In the context of secondary forest succession, aboveground-belowground interactions are known to affect the dynamics and functional structure of plant communities. However, the links between soil microbial communities, soil abiotic properties, plant functional traits in the case of semi-arid and arid ecosystems, are unclear. In this study, we investigated the changes in soil microbial species diversity and community composition, and the corresponding effects of soil abiotic properties and plant functional traits, during a ≥150-year secondary forest succession on the Loess Plateau, which represents a typical semi-arid ecosystem in China. Plant community fragments were assigned to six successional stages: 1–4, 4–8, 8–15, 15–50, 50–100, and 100–150 years after abandonment. Bacterial and fungal communities were analyzed by high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene and the internal transcribed spacer (ITS2) region of the rRNA operon, respectively. A multivariate variation-partitioning approach was used to estimate the contributions of soil properties and plant traits to the observed microbial community composition. We found considerable differences in bacterial and fungal community compositions between the early (S1–S3) and later (S4–S6) successional stages. In total, 18 and 12 unique families were, respectively, obtained for bacteria and fungi, as indicators of microbial community succession across the six stages. Bacterial alpha diversity was positively correlated with plant species alpha diversity, while fungal diversity was negatively correlated with plant species diversity. Certain fungal and bacterial taxa appeared to be associated with the occurrence of dominant plant species at different successional stages. Soil properties (pH, total N, total C, NH 4 -N, NO 3 -N, and PO 4 -P concentrations) and plant traits explained 63.80% and 56.68% of total variance in bacterial and fungal community compositions, respectively. These results indicate that soil microbial communities are coupled with plant communities via the mediation of microbial species diversity and community composition over a long-term secondary forest succession in the semi-arid ecosystem. The bacterial and fungal communities show distinct patterns in response to plant community succession, according to both soil abiotic properties and plant functional traits.
Cryptosporidium parvum is an important pathogen that causes diarrhea in virtually all human populations. Improved diagnostic methods are needed to understand the risk factors, modes of transmission, and impact of cryptosporidiosis. In the present study, we fluorescently labeled and counted C. parvum oocysts by flow cytometry (FC) and developed a simple and efficient method of processing human stool samples for FC analysis. Formed stool (suspended in phosphate-buffered saline) from an asymptomatic, healthy individual was seeded with known concentrations of oocysts, and oocysts were labeled with a cell wall-specific monoclonal antibody and detected by FC. The method described herein resulted in a mean oocyst recovery rate of 45% ؎ 16% (median, 42%), which consistently yielded a fourfold increase in sensitivity compared to direct fluorescentantibody assay of seeded stool samples. However, in many instances, FC detected as few as 10 3 oocysts per ml. Thus, FC provides a reproducible and sensitive method for C. parvum oocyst detection.
Phylogenetic and functional diversities and their relationship are important for understanding community assembly, which relates to forest sustainability. Thus, both diversities have been used in ecological studies evaluating community responses to environmental changes. However, it is unclear whether these diversity measures can uncover the actual community assembly processes. Herein, we examined their utility to assess such assembly processes by analyzing similarities in phylogenetic, functional, and taxonomic α- and β-diversities along an elevational gradient. Additionally, we examined the relationships among environment, phylogeny, and functional traits within the community. Based on our results, we evaluated whether phylogenetic or functional diversity could better reveal the actual community assembly processes. We found that taxonomic, phylogenetic, and functional α-diversities were correlated with one another. Although the functional α-diversity showed a linear correlation with the elevational gradient, taxonomic and phylogenetic α-diversities showed unimodal patterns. Both phylogenetic and functional β-diversities correlated with taxonomic β-diversity, but there was no significant relationship between the former. Overall, our results evidenced that phylogenetic diversity and taxonomic diversity showed similar patterns, whereas functional diversity showed a relatively independent pattern, which may be due to limitations in the functional trait dimensions used in the present study. Although it is difficult to unravel whether the environment shapes phylogeny or functional traits within a community, phylogenetic diversity is a good proxy for assessing the assembly processes, whereas functional diversity may improve knowledge on the community by maximizing information about the functional trait dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.