Dimeric cycloparaphenylene (CPP) architectures with well-defined flipping motion are constructed taking advantage of an efficient cyclocondensation reaction. Variable-temperature nuclear magnetic resonance (VT-NMR) analyses and theoretical calculations indicate rapid interconversion of cis and trans conformers at room temperature, while energetically favorable trans conformer exists at low temperature with the metastable cis conformer hidden. The trihexylsilylethynyl-substituted dimer exhibits bright emission in solution at 616 nm with quantum yield up to 80 %, representing the brightest CPP-based emitter beyond 600 nm. A 1:2 hostguest complex of the dimer and C 60 is established with negative cooperativity, demonstrating the first example of 1:2 complex from CPP derivatives.
Carbon nanohoops with donor–acceptor (D–A) structures are attractive electronic materials and biological fluorophores, but their synthesis is usually challenging. Moreover, the preparation of D–A nanohoop fluorophores exhibiting high fluorescence quantum...
Dimeric cycloparaphenylene (CPP) architectures with well-defined flipping motion are constructed taking advantage of an efficient cyclocondensation reaction. Variable-temperature nuclear magnetic resonance (VT-NMR) analyses and theoretical calculations indicate rapid interconversion of cis and trans conformers at room temperature, while energetically favorable trans conformer exists at low temperature with the metastable cis conformer hidden. The trihexylsilylethynyl-substituted dimer exhibits bright emission in solution at 616 nm with quantum yield up to 80 %, representing the brightest CPP-based emitter beyond 600 nm. A 1:2 hostguest complex of the dimer and C 60 is established with negative cooperativity, demonstrating the first example of 1:2 complex from CPP derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.