Down conversion Ce3+-Yb3+ co-doped YAG phosphors are used to enhance concentrator monocrystalline silicon solar cells. The coating of polymethyl methacrylate (PMMA) mixed with the phosphors is deposited on the surface of the solar cells by spin-coating method. It is found that the solar cells with the phosphor coating always have higher conversion efficiency than the bare solar cells under different illumination intensities. This is attributed to the down conversion effect of the phosphors and the reduced reflection (especially in the wavelength range 350–550 nm). The reflection of the light emitted from the phosphor's particles at the air/PMMA interface also contributes to the improvement. The relative growth in the conversion efficiency of the solar cells with the phosphor coatings increases with the illumination intensity from 4.86% under 100 mW cm−2 to 6.04% under 400 mW cm−2 because the increase in the emission from the phosphors is faster than that of the illumination intensity when the illumination intensity increases.
A nanoparticle-based strategy has been demonstrated using structurally-tailored tert-butylcalixarenes immobilized on gold nanoparticles to tune the guest access to the calixarene cone cavity for cationic recognition. This strategy exploits the interparticle charge-induced aggregation upon selective capture of metal cations into the nanoparticle-immobilized tert-butylcalixarenes, which produces calorimetric changes for the detection. A possible pathway for the binding of M(n+) into the t-BCA structure and the interparticle interaction is proposed for the formation of an electric double layer inducing the interparticle association responsible for the red-shifted surface plasmon resonance band of the nanoparticles. The value of this class of calorimetric nanoprobes will be in the area of designing advanced host-guest probes using a variety of calixarene ligands for ionic recognition in a simplistic detection format.
Data transmission and storage are inseparable from compression technology. Compressed sensing directly undersamples and reconstructs data at a much lower sampling frequency than Nyquist, which reduces redundant sampling. However, the requirement of data sparsity in compressed sensing limits its application. The combination of neural network-based generative models and compressed sensing breaks the limitation of data sparsity. Compressed sensing for extreme observations can reduce costs, but the reconstruction effect of the above methods in extreme observations is blurry. We addressed this problem by proposing an end-to-end observation and reconstruction method based on a deep compressed sensing generative model. Under RIP and S-REC, data can be observed and reconstructed from end to end. In MNIST extreme observation and reconstruction, end-to-end feasibility compared to random input is verified. End-to-end reconstruction accuracy improves by 5.20% over random input and SSIM by 0.2200. In the Fashion_MNIST extreme observation and reconstruction, it is verified that the reconstruction effect of the deconvolution generative model is better than that of the multi-layer perceptron. The end-to-end reconstruction accuracy of the deconvolution generative model is 2.49% higher than that of the multi-layer perceptron generative model, and the SSIM is 0.0532 higher.
A three-dimensional graphene-based composite was prepared by a simple one-step in-site reduced-oxide method under atmospheric pressure. The obtained hydrogel was modified with 4-amino-benzenesulfonic acid and connected with ethylenediamine, and freeze-dried into an aerogel, which was characterized. Then the surface interaction with platinum (Pt, IV) was explored. The obtained aerogel showed good adsorption for Pt (IV) at acid conditions, giving a rising to the adsorption rate > 98% while pH ≥ 6. Using hexadecyl trimethyl ammonium bromide of 2% (m/V) as an eluent to desorb the Pt (IV) from the surface of the aerogel, a desorption rate of 81.1% was obtained in this process. Urea, buffer aquation and other surfactants were used in the desorption experiment to understand the adsorption mechanism between the aerogel and Pt (IV). In this work, hydrogen bond, van der Waals force and electronic interaction force mainly drove the adsorption process. For obtaining more purified Pt (IV), we used 0.5% CTAB to desorb Pd (II). A new three-dimensional graphene-based composite was prepared and the surface interaction between Pt (IV) and composite was experimented for understanding the adsorption mechanism and exploring its potential application in sample preparation in low concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.