Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.
PurposeTo investigate and compare the effects of propofol and midazolam on inflammation and oxidase stress in children with congenital heart disease undergoing cardiac surgery.Materials and MethodsThirty-two ASA class I-II children with congenital heart disease undergoing cardiac surgery were randomly divided into two groups: propofol combined with low dose fentanyl (PF group, n = 16) and midazolam combined with low dose fentanyl (MF group, n = 16). Tracheal extubation time and length of Intensive Care Unit (ICU) stay were recorded. Blood samples were taken before operation (T0), at 2 h after release of the aorta cross-clamp (T3) and at 24 h after operation (T4) to measure interleukin 6 (IL-6), IL-8, superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Myocardium samples were collected at 10-20 min after aorta cross-clamp (T1) and at 10-20 min after the release of the aorta cross-clamp (T2) to detect heme oxygenase-1 (HO-1) expression.ResultsTracheal extubation time and length of ICU stay in PF group were significantly shorter than those of the MF group (p < 0.05, respectively). After cardiopulmonary bypass, IL-6, IL-8 and MDA levels were significantly increased, and the SOD level was significantly reduced in both two groups, but PF group exhibited lower IL-6, IL-8 and MDA levels and higher SOD levels than the MF group (p < 0.05, respectively). The HO-1 expression in the PF group was significantly higher than that in MF group at the corresponding time points (p < 0.05, respectively).ConclusionPropofol is superior to midazolam in reducing inflammation and oxidase stress and in improving post-operation recovery in children with congenital heart disease undergoing cardiac surgery.
MicroRNAs play critical roles in regulating cell survival under multiple pathological conditions of heart diseases. Oxidative stress-induced apoptosis contributes greatly to heart ischemia-reperfusion injury. Herein, we describe a novel regulatory role of miR-28 on the survival of cardiomyocytes. We show that miR-28 was upregulated in cardiomyocytes treated with hydrogen peroxide (HO). MiR-28 gain of function sensitized cell apoptosis, whereas miR-28 loss of function partially rescued cell apoptosis induced by HO. Importantly, we observed a significant reduction in Akt/mammalian target of rapamycin (mTOR) signaling activity after miR-28 treatment. Luciferase activity assay and western blot analysis both revealed that, phosphoinositide-dependent kinase-1 (PDK1), which is critical for Akt activation, was directly and negatively modulated by miR-28. Our results therefore indicate that miR-28 regulates oxidative stress-induced cell apoptosis in heart muscle cells, which possibly involves a PDK1/Akt/mTOR-dependent mechanism. MIR-28 could serve as a critical therapeutic target to diminish oxidative stress-induced cell death in the heart.
The aim of this study was to investigate the effect of propofol and its relation to postoperation recovery in children undergoing cardiac surgery with cardiopulmonary bypass (CPB). Twenty ASA class I-II children with congenital heart disease undergoing cardiac surgery were randomly allocated to a propofol group (n = 10) or a control group (n = 10). Blood samples were collected at five time points: before operation (T (0)), before the start of CPB (T (1)), 25 min after the aorta was cross-clamped (T (2)), 30 min after release of the aortic cross-clamp (T (3)), and 2 h after the cessation of CPB (T (4)). The myocardial samples were collected at the time of incubation into the right atrium before CPB and at 30 min after reperfusion. After CPB, propofol significantly suppressed the increase of the serum lactate dehydrogenase (LDH), creatine phosphokinase (CK), and interleukin-6 (IL-6) levels and the decrease of the serum superoxide dismutase (SOD) level. In addition, propofol inhibited the increase of myocardial nuclear factor-κB (NF-κB) expression and inflammatory cells infiltration after CPB. Furthermore, propofol significantly shortened the tracheal extubation time. In conclusion, propofol exerts a protective effect and improves postoperation recovery through its antioxidant and anti-inflammatory actions in children undergoing cardiac surgery with CPB.
Introduction. Sepsis-induced myocardial dysfunction (SIMD) is the most common complications of sepsis and septic shock with extremely high incidence and mortality. Lipocalin 10 (Lcn10) has recently been identified as a potential biomarker for heart failure, yet its relation to sepsis has not been investigated. The purpose of this study was to explore whether circulating Lcn10 could be used as a prognostic tool in patients with SIMD. Methods. In this single-center observational pilot study, seventy-five sepsis patients were enrolled after sepsis diagnosis or ICU admission (45.3% female, median age 60 years), and 35 patients (46.7%) developed myocardial dysfunction. Serum Lcn10 levels of septic patients were measured using the enzyme-linked immunosorbent assay (ELISA) at the time of admission. Other biomarkers of cardiac function and Lcn10 concentration were compared between SIMD and non-SIMD groups. Results. We observed that the median Lcn10 levels were 2.780 ng/mL in patients with SIMD and 2.075 ng/mL in patients without SIMD ( P < 0.05 ). The area under the receiver operating characteristic (ROC) curve for the diagnosis of SIMD was 0.797 ( P < 0.05 ). In addition, elevated serum Lcn10 levels at the time of admission were positively associated with 28-day mortality in septic patients. Conclusions. Our study indicates that circulating Lcn10 levels may serve as a novel biomarker for the diagnosis and prognosis of myocardial dysfunction induced by sepsis. An additional large multicenter study may be warranted to confirm the findings of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.