Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines.
Bordetella pertussis, the causative agent of whooping cough, has remained endemic in The Netherlands despite extensive nationwide vaccination since 1953. In the 1990s, several epidemic periods have resulted in many cases of pertussis. We have proposed that strain variation has played a major role in the upsurges of this disease in The Netherlands. Therefore, molecular characterization of strains is important in identifying the causes of pertussis epidemiology. For this reason, we have developed a multiple-locus variable-number tandem repeat analysis (MLVA) typing system for B. pertussis. By combining the MLVA profile with the allelic profile based on multiple-antigen sequence typing, we were able to further differentiate strains. The relationships between the various genotypes were visualized by constructing a minimum spanning tree. MLVA of Dutch strains of B. pertussis revealed that the genotypes of the strains isolated in the prevaccination period were diverse and clearly distinct from the strains isolated in the 1990s. Furthermore, there was a decrease in diversity in the strains from the late 1990s, with a remarkable clonal expansion that coincided with the epidemic periods. Using this genotyping, we have been able to show that B. pertussis is much more dynamic than expected.
The Bordetella pertussis proteins P.69 (also designated pertactin) and pertussis toxin are important virulence factors and have been shown to confer protective immunity in animals and humans. Both proteins are used in the new generation of acellular pertussis vaccines (ACVs), and it is therefore important to study the degree of antigenic variation in these proteins. Sequence analysis of the genes for P.69 and the pertussis toxin S1 subunit, using strains collected from Dutch patients in the period 1949 to 1996, revealed three P.69 and three S1 variants which show differences in amino acid sequence. Polymorphism in P.69 was confined to a region comprised of repeats and located proximal to the RGD motif involved in adherence to host tissues. Variation in S1 was observed in two regions previously identified as T-cell epitopes. P.69 and S1 variants, identical to those included in the Dutch whole-cell pertussis vaccine (WCV), were found in 100% of the strains from the 1950s, the period when the WCV was introduced in The Netherlands. However, nonvaccine types of P.69 and S1 gradually replaced the vaccine types in later years and were found in ∼90% strains from 1990 to 1996. These results suggest that vaccination has selected for strains which are antigenically distinct from vaccine strains. Analysis of strains from vaccinated and nonvaccinated individuals indicated that the WCV protects better against strains with the vaccine type P.69 than against strains with non-vaccine types (P = 0.024). ACVs contain P.69 and S1 types which are found in only 10% of recent Dutch B. pertussis isolates, implying that they do not have an optimal composition. Our findings cast a new light on the reemergence of pertussis in highly vaccinated populations and may have major implications for the long-term efficacy of both WCVs and ACVs.
BackgroundMolecular typing of methicillin-resistant Staphylococcus aureus (MRSA) is required to study the routes and rates of transmission of this pathogen. Currently available typing techniques are either resource-intensive or have limited discriminatory ability. Multiple-locus variable number tandem repeat analysis (MLVA) may provide an alternative high throughput molecular typing tool with high epidemiological resolution.Methodology/Principal FindingsA new MLVA scheme for S. aureus was validated using 1681 S. aureus isolates collected from Dutch patients and 100 isolates from pigs. MLVA using 8 tandem repeat loci was performed in 2 multiplex PCRs and the fluorescently labeled PCR products were accurately sized on an automated DNA sequencer. The assessed number of repeats was used to create MLVA profiles consisting of strings of 8 integers that were used for categorical clustering. MLVA yielded 511 types that clustered into 11 distinct MLVA complexes which appeared to coincide with MLST clonal complexes. MLVA was at least as discriminatory as PFGE and twice as discriminatory as spa-sequence typing. There was considerable congruence between MLVA, spa-sequence typing and PFGE, at the MLVA complex level with group separation values of 95.1% and 89.2%. MLVA could not discriminate between pig-related MRSA strains isolated from humans and pigs, corroborating the high degree of relationship. MLVA was also superior in the grouping of MRSA isolates previously assigned to temporal-spatial clusters with indistinguishable SpaTypes, demonstrating its enhanced epidemiological usefulness.ConclusionsThe MLVA described in this study is a high throughput, relatively low cost genotyping method for S. aureus that yields discrete and unambiguous data that can be used to assign biological meaningful genotypes and complexes and can be used for interlaboratory comparisons in network accessible databases. Results suggest that MLVA offsets the disadvantages of other high discriminatory typing approaches and represents a promising tool for hospital, national and international molecular epidemiology.
BackgroundDespite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination.ResultsThe distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains.ConclusionsOur work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.