Summary In multiple sclerosis (MS), soluble tumor necrosis factor (TNF) is detrimental via activation of TNF receptor 1 (TNFR1), whereas transmembrane TNF is beneficial primarily by activating TNF receptor 2 (TNFR2). Here we investigate the role of TNFR2 in microglia and monocytes/macrophages in experimental autoimmune encephalomyelitis (EAE), a model of MS, by cell-specific gene targeting. We show that TNFR2 ablation in microglia leads to early onset of EAE with increased leukocyte infiltration, T cell activation, and demyelination in the central nervous system (CNS). Conversely, TNFR2 ablation in monocytes/macrophages results in EAE suppression with impaired peripheral T cell activation, and reduced CNS T cell infiltration and demyelination. Our work uncovers a dichotomy of function for TNFR2 in myeloid cells, with microglial TNFR2 providing protective signals to contain disease, and monocyte/macrophagic TNFR2 driving immune activation and EAE initiation. This must be taken into account when targeting TNFR2 for therapeutic purposes in neuroinflammatory diseases.
Ustilaginoidea virens , the causal agent of rice false smut (RFS), has become one of the most devastating rice pathogens worldwide. As a group of essential virulence factors, the effectors in the filamentous fungus might play central roles in the interaction between plants and pathogens. However, little is known about the roles of individual effectors in U. virens virulence. In this study, we identified and characterized a small secreted cysteine-rich effector, SCRE2, in U. virens . SCRE2 was first confirmed as an effector through yeast secretion, protein localization and translocation assays, as well as its expression pattern during U. virens infection. Transient expression of SCRE2 in Nicotiana benthamiana suppressed necrosis-like defense symptoms triggered by the mammalian BAX and oomycete elicitin INF1 proteins. The ability of SCRE2 to inhibit immunity-associated responses in N. benthamiana , including elicitor-triggered cell death and oxidative burst, is further defined to a small peptide region SCRE2 68-85 through expressing a series of truncated proteins. Convincingly, ectopic expression of SCRE2 in the transgenic rice cells significantly inhibited pathogen-associated molecular pattern-triggered immunity including flg22- and chitin-induced defense gene expression and oxidative burst. Furthermore, the scre2 knockout mutant generated by the CRISPR/Cas9 system greatly attenuated in U. virens virulence to rice. Collectively, this study indicates that the effector SCRE2 is able to inhibit plant immunity and is required for full virulence of U. virens .
Icariin (ICA) is a pharmacologically active flavonoid glycoside that shows promise in the treatment and prevention of osteoporosis (OP). However, the mechanisms underlying the anti-osteoporotic effects of ICA remain largely unclear. The present study used quantitative polymerase chain reaction, western blot and immunohistochemical analysis to examine the effects of ICA on several key targets in the Notch signaling pathway in bone tissue in ovariectomized rats. It was observed that ICA has a pronounced beneficial effect on OP rats and inhibits the expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα) and fatty acid-binding protein 4 (FABP4) mRNA. In addition, it was identified that ICA downregulates the expression of notch1 intracellular domain (N1ICD) and Jagged1 proteins in bone tissue, and suppresses the effect of N1ICD on Notch2 mRNA expression. It is proposed that ICA inhibits the differentiation of mesenchymal stem cells into adipocytes by inhibiting the expression of PPARγ, C/EBPα and FABP4 mRNA via the Notch signaling pathway. In addition, it is proposed that ICA inhibits the expression of Notch2 mRNA by suppressing the effect of N1ICD. In conclusion, the results provide further mechanistic evidence for the clinical efficacy of ICA in the treatment of OP.
Icariin (ICA), the main active flavonoid glucoside isolated from Herba Epimedii, has been shown to prevent postmenopausal bone loss in vitro. However, the mechanisms by which ICA prevents bone loss in vivo remain poorly understood. In the present study, the effect of ICA in an ovariectomized (OVX) rat model of osteoporosis was evaluated. Sprague-Dawley rats were divided into sham-operated and OVX groups. The OVX rats were randomly divided into five groups: OVX group (water only), Fosamax (positive) group (5.04 mg/kg, weekly, administered orally), and OVX-ICA groups (125, 250 or 500 mg/kg, daily, administered orally) and treated for 12 weeks. The 125, 250 and 500 mg/kg doses of ICA were designated as low (L-ICA), medium (M-ICA) and high (H-ICA), respectively. Compared with the sham-operated group, the OVX rats had significantly decreased bone mineral density (BMD), reduced serum osteoprotegerin (OPG) and increased serum bone gla protein (BGP) concentrations. ICA significantly increased BMD, biomechanical strength, trabecular bone number and trabecular bone thickness, and reduced lumbar trabecular bone separation. Treatment with ICA also completely normalized the expression of osteoblast markers by increasing serum concentrations of OPG and BGP. Enhanced mineralization was demonstrated by increased expression of differentiation markers. Although further in vivo studies are required to investigate the efficacy of ICA in improving bone mass, this study demonstrates that ICA has strong osteogenic activity, inducing osteogenic differentiation and inhibiting resorption by osteoclasts. It also demonstrates an antiosteoporotic effect for ICA on the basis of BMD, biochemical markers, biomechanical tests and histopathological parameters. Compared with L-ICA and H-ICA, M-ICA was more effective and caused no liver or kidney damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.