Globally, China has the largest scale of kelp cultivation and production operations. However, its kelp aquaculture industry is suffering from declining germplasm diversity, degradation of agronomic traits, the presence of polluted environments, changing ocean conditions and increasing anthropological interference. This review covers two of the most commercially important kelp species in China, viz. Saccharina japonica and Undaria pinnatifida. It summarizes the history of their cultivation, production, economic and ecological benefits, their breeding programmes (e.g. inter-and intra-specific hybridization and marker-assisted selection) and efforts towards population genetic diversity and conservation. The article focuses on three significant challenges, for example genetic crosscontamination between the wild and farmed kelp populations, ocean warming and ocean acidification. Accordingly, we outline the steps required to provide several intervention measures, for example (i) collection and preservation of wild and cultivated kelp germplasm; (ii) selection of suitable cultivation sites under changing environmental conditions; (iii) developing stress-resistant cultivars; and finally, (iv) adoption of innovative cultivation models. The review concludes with genome-based, designs for molecular breeding and calls for the establishment of an East Asian Kelp Consortium (EAKC). Collectively, the Chinese kelp industry could provide beneficial goods and services, for example bioenergy to fine chemicals and environmental benefits, such as carbon capture, pH amelioration and provision of habitat for many other marine species of commercial value. The strategies proposed in this article thus have the potential to not only improve but also reinvigorate the kelp industry in China and nearby Japan and Korea, in the context of both environmental health and economic benefits.
Aim Oceanic currents are among the most pervasive hydrodynamic features in shaping community dynamics, population connectivity and phylogeographical structure of intertidal species. Here, we test whether population structure and biogeographical gradients of genetic diversity in the brown alga Sargassum thunbergii are correlated with oceanic currents in the north-west Pacific (NWP).Location North-west Pacific (25.07°N-43.36°N).Methods Nuclear internal transcribed spacer-2 and mitochondrial cox3 sequences were obtained from 835 and 810 individuals of S. thunbergii respectively. Parsimony networks and phylogenetic trees (maximum parsimony and Bayesian inference) were constructed to evaluate phylogeographical structure. Pairwise F ST estimates and analyses of molecular variance (AMOVA) at various hierarchical levels (latitude, longitude, marine provinces, biogeographical basins and zoogeographical zones) were conducted to elucidate population genetic differentiation. migrate software was used to estimate the number of migrants between adjacent populations.Results Several lines of evidence indicate that S. thunbergii is characterized by shallow population structure. Geographical distances do not correlate with population pairwise genetic differentiations. The corridor/stepping-stone model-based coalescent analyses reveal high levels of asymmetric gene flow among S. thunbergii populations, with the numbers of migrants largely corresponding to the directions of oceanic current systems in the NWP. Genetic signatures also indicate that Jeju Island, Korea might act as a transition zone for dispersal of S. thunbergii in the NWP driven by the Kuroshio Current, thus facilitating subsequent transportation northward into the Sea of Japan and the Yellow-Bohai Sea.Main conclusions Population genetic homogeneity in S. thunbergii was mainly structured by oceanic currents rather than palaeoclimatic events. Our study illustrates an important phylogeographical case of how coastal hydrodynamic factors contributed to population connectivity and geographical shifts of genetic diversity for marine organisms without a pelagic stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.