Bandgap engineering of atomically thin 2D crystals is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here, we report a simple but rather unexpected approach for bandgap engineering of muscovite-type mica nanosheets (KAl 3 Si 3 O 10 (OH) 2 ) via controlled molecular thickness. Through density functional calculations, we analyze electronic structures in 2D mica nanosheets and develop a general picture for tunable bandgap narrowing induced by controlled molecular thickness. From conducting atomic force microscopy, we observe an abnormal bandgap narrowing in 2D mica nanosheets, contrary to wellknown quantum size effects. In mica nanosheets, decreasing the number of layers results in reduced bandgap energy from 7 to 2.5 eV, and the bilayer case exhibits a semiconducting nature with ∼2.5 eV. Structural modeling by transmission electron microscopy and density functional calculations reveal that this bandgap narrowing can be defined as a consequence of lattice relaxations as well as surface doping effects. These bandgap engineered 2D mica nanosheets open up an exciting opportunity for new physical properties in 2D materials and may find diverse applications in 2D electronic/optoelectronic devices. ■ INTRODUCTIONTwo-dimensional (2D) nanosheets with atomic or molecular thickness are emerging as important new materials because of their particular properties and potential applications in nextgeneration electronic devices. 1−12 One attractive aspect of these exfoliated nanosheets is that various nanostructures can be fabricated using them as 2D building blocks. Sophisticated functionalities or nanodevices may be designed through combining different nanosheets with a precise control over their arrangement on a molecular scale. The discovery of graphene can be considered a defining point in the research and development of such 2D material systems. 1,2,12 This breakthrough has opened up the possibility of exploring the fascinating properties of 2D nanosheets of other inorganic layered materials; 2−11 the reduction to single or a few atomic layers will offer new properties and novel applications. 13 To expand the utility of these 2D nanosheets, the electronic properties must be tailored through bandgap engineering and/ or doping process. Bandgap engineering of 2D nanosheets is particularly important for their applications in nanoelectronics, optoelectronics, and photonics. One key issue in the developments of 2D nanosheets is to produce semiconductor nanosheets with a narrow bandgap or a semiconductor-tometal transition, since it allows the use of field effect transistors (FETs) as well as the effective operation for low-energy absorptions and excitation of semiconductor optoelectronics. A possible indication of the bandgap engineering came from MoS 2 nanosheets, which exhibited a crossover behavior from an indirect to a direct-gap semiconductor in the monolayer limit. 14 However, the bandgap narrowing of nanomaterials is almost always difficult to achieve, since most nanomaterials would show ...
We have characterized and evaluated changes in graphene oxide (GO) induced by means of freeze-drying. In order to evaluate these changes, we investigated the effects of freeze-drying and chemical reduction processes on the structure, morphology, chemical composition, and Raman properties of GO and reduced GO. The freeze-dried GO had a pore structure, maintaining a pored morphology even after thermal annealing. The freeze-dried samples were composed of a single folded nanosheet or a few nanosheets stacked and folded. The oxygen-containing functional groups were removed not only during the freeze-drying but also during the reduction processes, with an accompanying decrease in the average size of the sp(2) carbon domain (i.e. an increase in the ID/IG value).
We have successfully fabricated single- and few-layer mica nanosheets, by means of using a solvothermal method in conjunction with a microwave irradiated expansion process. In the solvothermal process, dissolved potassium ions were intercalated onto the interlayer space of the mica. Following this, microwave irradiation facilitates the exfoliation of individual nanosheets. The synthesized products were characterized by field emission scanning electron microscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction, x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy measurements. AFM and TEM studies claimed the existence of single-layer mica. High-resolution TEM (HR-TEM) investigations revealed that the exfoliated product corresponded to a crystalline mica structure, being comprised of Si, Al, O, and K elements. XPS spectra exhibited the major constituent peaks, including O 1s, Si 2p, Al 2p, and K 2p. In addition, C atomic concentration has been slightly increased by the contamination during exfoliation, presumably due to the increase of the exposed mica surface. The C 1s XPS spectra revealed that the C-C bonding in organic surface contaminants was broken, whereas the Si-C bonding was enhanced, by the exfoliation process. The O 1s XPS spectra revealed that the Si-O bonding in mica was broken, generating the O-Si-C bonding. This study paves the way towards the fabrication of single- or few-layer inorganic nanosheets of desired materials, via a convenient and efficient route.
We have realized a p-type-like conduction in initially n-type SnO2 nanowires grown using a vapor-liquid-solid method. The transition was achieved by irradiating n-type SnO2 nanowires with a high-energy electron beam, without intentional chemical doping. The nanowires were irradiated at doses of 50 and 150 kGy, and were then used to fabricate NO2 gas sensors, which exhibited n-type and p-type conductivities, respectively. The tuneability of the conduction behavior is assumed to be governed by the formation of tin vacancies (under high-energy electron beam irradiation), because it is the only possible acceptor, excluding all possible defects via density functional theory (DFT) calculations. The effect of external electric fields on the defect stability was studied using DFT calculations. The measured NO2 sensing dynamics, including response and recovery times, were well represented by the electron-hole compensation mechanism from standard electron-hole gas equilibrium statistics. This study elucidates the charge-transport characteristics of bipolar semiconductors that underlie surface chemical reactions. The principles derived will guide the development of future SnO2-based electronic and electrochemical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.