BackgroundThe p53 pathway is differentially activated in response to distinct DNA damage, leading to alternative phenotypic outcomes in mammalian cells. Recent evidence suggests that p53 expression dynamics play an important role in the differential regulation of cell fate, but questions remain as to how p53 dynamics and the subsequent cellular response are modulated by variable DNA damage.ResultsWe identified a novel, bimodal switch of p53 dynamics modulated by DNA-damage strength that is crucial for cell-fate control. After low DNA damage, p53 underwent periodic pulsing and cells entered cell-cycle arrest. After high DNA damage, p53 underwent a strong monotonic increase and cells activated apoptosis. We found that the damage dose-dependent bimodal switch was due to differential Mdm2 upregulation, which controlled the alternative cell fates mainly by modulating the induction level and pro-apoptotic activities of p53.ConclusionsOur findings not only uncover a new mode of regulation for p53 dynamics and cell fate, but also suggest that p53 oscillation may function as a suppressor, maintaining a low level of p53 induction and pro-apoptotic activities so as to render cell-cycle arrest that allows damage repair.
Accumulated evidence indicates that CCAT1 functions as an oncogene in the progression of a variety of tumors. However, little is known as to how CCAT1 impacts tumorigenesis in human prostate cancer. In this study, we found from The Cancer Genome Atlas and Memorial Sloan Kettering Cancer Center database that CCAT1 is highly upregulated in castration-resistant prostate cancer (CRPC) compared with androgen-dependent prostate cancer (ADPC). Higher level of CCAT1 leads to increased mortality in patients with CRPC. In vitro and in vivo studies show that CCAT1 promotes prostate cancer cell proliferation as well as the tumor growth of prostate cancer xenografts. Mechanistically, in cytoplasm, CCAT1 sponges MIR-28-5P to prevent the anticancer effect. In nucleus, CCAT1 acts as a scaffold for DDX5 (P68) and AR transcriptional complex to facilitate the expression of AR-regulated genes, thus stimulating CRPC progression. Our findings suggest that CCAT1 is an oncogenic factor in the progression of CRPC with different regulatory mechanisms in the nucleus and cytoplasm of cells.
Accumulated evidence indicate that miR-744 functions as either tumor suppressor or oncogene in the progression of a variety of tumors, with a tumor type-specific way. However, little is known about how miR-744 impacts on the tumorigenesis of human prostate cancer. In this study, employing the analyses of microarray, qRT-PCR and re-analysis of MSKCC data, we found that CRPC tissues expressed much more miR-744 than ADPC tissues did, and the expression level of miR-744 was inversely associated with survival of CRPC patients. In vitro studies revealed that miR-744 promotes PCa cells proliferation, enhances migration, invasion; in vivo results demonstrated that silencing of miR-744 mediated by shRNA dramatically reduces PCa xenograft tumor growth. Importantly, through human gene expression array, pathway enrichment analysis and Western blot, we identified that miR-744 dramatically activated Wnt/β-catenin pathway by targeting multiple negative regulators of Wnt/β-catenin signaling, including SFRP1, GSK3β, TLE3 and NKD1. At molecular level, we further defined that NKD1 is a major functional target of miR-744. Our findings indicate that miR-744 acts as one of oncogenic factor in the progression of CRPC by recruiting a mechanism of aberrant activation of Wnt/β-catenin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.