The correlation between polymer architecture and molecular-level forces has long been a challenging research subject. Herein, spiropyran, a mechanophore that exhibits fluorescence change under force, was incorporated as a cross-linker between PMMA backbone segments. Using an in situ opto-mechanical setup to probe the molecular-level forces, the mechano-response of SP-linked PMMA as a function of the cross-link density was monitored during deformation. The dependence of the molecular-level force on cross-link density was quantitatively examined and revealed. First, a higher cross-link density shifted the fluorescence onset, that is, the onset of the spiropyran-tomerocyanine transition, to lower strains, eventually shifting the onset long before yield, without requiring sufficient chain mobility, owing to the higher efficiency of the force transfer. Under the same energy, the increase in cross-link density allowed for faster force transfer, but only to a certain level. Finally, the overall amount of spiropyran-to-merocyanine conversion linearly decreased with increasing cross-link density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.