The purpose of this study was to determine whether convolutional neural networks (CNNs) can predict paresthesia of the inferior alveolar nerve using panoramic radiographic images before extraction of the mandibular third molar. The dataset consisted of a total of 300 preoperative panoramic radiographic images of patients who had planned mandibular third molar extraction. A total of 100 images taken of patients who had paresthesia after tooth extraction were classified as Group 1, and 200 images taken of patients without paresthesia were classified as Group 2. The dataset was randomly divided into a training and validation set (n = 150 [50%]), and a test set (n = 150 [50%]). CNNs of SSD300 and ResNet-18 were used for deep learning. The average accuracy, sensitivity, specificity, and area under the curve were 0.827, 0.84, 0.82, and 0.917, respectively. This study revealed that CNNs can assist in the prediction of paresthesia of the inferior alveolar nerve after third molar extraction using panoramic radiographic images.
To date, for the diagnosis of dentofacial dysmorphosis, we have relied almost entirely on reference points, planes, and angles. This is time consuming, and it is also greatly influenced by the skill level of the practitioner. To solve this problem, we wanted to know if deep neural networks could predict postoperative results of orthognathic surgery without relying on reference points, planes, and angles. We use three-dimensional point cloud data of the skull of 269 patients. The proposed method has two main stages for prediction. In step 1, the skull is divided into six parts through the segmentation network. In step 2, three-dimensional transformation parameters are predicted through the alignment network. The ground truth values of transformation parameters are calculated through the iterative closest points (ICP), which align the preoperative part of skull to the corresponding postoperative part of skull. We compare pointnet, pointnet++ and pointconv for the feature extractor of the alignment network. Moreover, we design a new loss function, which considers the distance error of transformed points for a better accuracy. The accuracy, mean intersection over union (mIoU), and dice coefficient (DC) of the first segmentation network, which divides the upper and lower part of skull, are 0.9998, 0.9994, and 0.9998, respectively. For the second segmentation network, which divides the lower part of skull into 5 parts, they were 0.9949, 0.9900, 0.9949, respectively. The mean absolute error of transverse, anterior–posterior, and vertical distance of part 2 (maxilla) are 0.765 mm, 1.455 mm, and 1.392 mm, respectively. For part 3 (mandible), they were 1.069 mm, 1.831 mm, and 1.375 mm, respectively, and for part 4 (chin), they were 1.913 mm, 2.340 mm, and 1.257 mm, respectively. From this study, postoperative results can now be easily predicted by simply entering the point cloud data of computed tomography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.