Campylobacter jejuni (C. jejuni) is considered as an opportunistic zoonotic pathogen that may cause gastroenteritis in humans and other animals. Wild birds may be as potential vectors of C. jejuni around urban and suburban areas. Here, 520 samples were collected from 33 wild bird species in urban and suburban areas, Beijing. In total 57 C. jejuni were isolated from seven species. It was found that Nineteen (33.33%, 19/57) isolates were resistant to at least one of 11 antibiotics, especially streptomycin (36.84%) and four isolates resistant to all. Nineteen (33.33%, 19/57) isolates were multi-drug resistance. Multilocus sequence typing (MLST) analysis of the isolates showed that 36 different sequence types (STs) belonged to four Clonal complexes and unassigned. Twenty STs (55.56%) and six alleles among them were first detected. Virulence genes including flaA, cadF, and the cytolethal distending toxin (CDT) gene cluster, were detected in all isolates, but truncated cdt gene clusters only detected in the isolates from the crow, daurian jackdaw and silver pheasant. In conclusion, it was the first detection of C. jejuni involved truncated cdt gene clusters from the silver pheasant. These wild birds around urban and suburban areas may pose potential public health problems as reservoir vectors of C. jejuni.
In light of its high potency in suppressing MRSA in both in vitro and in vivo models, SC5005 represents a potential lead agent for continued preclinical development as a therapeutic intervention against MRSA.
Objectives In the past few decades, multiple-antibiotic-resistant Staphylococcus aureus has emerged and quickly spread in hospitals and communities worldwide. Additionally, the formation of antibiotic-tolerant persisters and biofilms further reduces treatment efficacy. Previously, we identified a sorafenib derivative, SC5005, with bactericidal activity against MRSA in vitro and in vivo. Here, we sought to elucidate the resistance status, mode of action and anti-persister activity of this compound. Methods The propensity of S. aureus to develop SC5005 resistance was evaluated by assessment of spontaneous resistance and by multi-passage selection. The mode of action of SC5005 was investigated using macromolecular synthesis, LIVE/DEAD and ATPlite assays and DiOC2(3) staining. The effect of SC5005 on the mammalian cytoplasmic membrane was measured using haemolytic and lactate dehydrogenase (LDH) assays and flow cytometry. Results SC5005 depolarized and permeabilized the bacterial cytoplasmic membrane, leading to reduced ATP production. Because of this mode of action, no resistance of S. aureus to SC5005 was observed after constant exposure to sub-lethal concentrations for 200 passages. The membrane-perturbing activity of SC5005 was specific to bacteria, as no significant haemolysis or release of LDH from human HT-29 cells was detected. Additionally, compared with other bactericidal antibiotics, SC5005 exhibited superior activity in eradicating both planktonic and biofilm-embedded S. aureus persisters. Conclusions Because of its low propensity for resistance development and potent persister-eradicating activity, SC5005 is a promising lead compound for developing new therapies for biofilm-related infections caused by S. aureus.
In this paper, we present an ultra-fast, simple and cost-effective way-the direct peeling method (DPM)-to produce nanohairs with high aspect ratio on fluorinated ethylene propylene (FEP) films within 30 s. The FEP films with nanohair structures afford impressive demonstrations of superhydrophobicity and self-cleaning effect; the characteristics described above along with the flexibility of FEP may prove useful for solar cells and curved components in the field of biological and technological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.