Background/Aims: Coronary microembolization (CME) can lead to no-reflow or slow reflow, which is one of the important reasons for loss of clinical benefit from myocardial reperfusion therapy. MicroRNAs and autophagy are heavily implicated in the occurrence and development of almost all cardiovascular diseases. Therefore, the present study was designed to investigate the role of miR-30e-3p and autophagy in CME-induced myocardial injury rat model. Methods: Sixty rats were randomly divided into six groups: sham, CME 1h,3h,6h,9h, and 12h (n = 10 per group). Our CME rat model was created by injecting polyethylene microspheres (42mm) into the left ventricle of the heart; the sham group was injected with same volume of normal saline. The cardiac function and serum cardiac troponin I (cTnI) level of each group was measured. HE staining and HBFP staining were used to evaluate the myocardial micro-infarction area of myocardium tissue samples. Then RT-qPCR and western blot were used to detect the expression of miR-30e-3p and, autophagy related protein LC3-II and p62, respectively. Transmission electron microscope (TEM) was used to identify autophagic vacuoles in tissue samples. Results: The cardiac function of the CME 6h,9h, and 12h groups were significantly decreased compared to the sham group (P < 0.05) and the cTnI level in each group were also significantly increased (P < 0.05). The expression of miR-30e-3p in the CME 6h, 9h and 12h group were decreased significantly compared with the sham group (P < 0.05). Meanwhile, the expression of autophagy related protein LC3-II decreased significantly and p62 increased significantly in the CME 9h and 12h group (P < 0.05). TEM images showed typical autophagic vacuoles for each of the CME groups. Conclusions: Myocardial miR-30e-3p is down regulated after CME and is accompanied by inhibited autophagy and decreased cardiac function. Therefore, miR-30e-3p may be involved in CME-induced cardiac dysfunction by regulating myocardial autophagy.
Background/Aims: Microvascular obstruction (MVO), an undesirable complication of percutaneous coronary intervention, is independently associated with adverse left ventricle remodeling and poor prognosis after acute myocardial infarction. Hypoxia and oxidative stress major roles in the pathophysiology of MVO. Pim1 serves an important protective role in the ischemic myocardium, but the underlying mechanisms remain poorly defined. Autophagy in early hypoxia or during moderate oxidative stress has been demonstrated to protect the myocardium. In this study, we investigated the association between the protective effect of Pim1 and autophagy after hypoxia and oxidative stress. Methods: Ventricular myocytes from neonatal rat heart (NRVMs) were isolated. NRVMs were exposed to hypoxia and H2O2. Rapamycin and 3-methyladenine (3-MA) were used as an activator and inhibitor of autophagy, respectively. pHBAd-Pim1 was transfected into NRVMs. We assessed cardiomyocyte apoptosis by Annexin V-FITC/PI flow cytometry. Autophagy was evaluated by mRFP-GFP-LC3 adenovirus infection by confocal microscopy. Western blotting was used to quantify apoptosis or autophagy protein (caspase-3, LC3, P62, AMPK, mTOR, ATG5) concentrations. Results: Autophagy and apoptosis in NRVMs significantly increased and peaked at 3 h and 6 h, respectively, after exposure to hypoxia and H2O2. The mTOR inhibitor rapamycin induced autophagy and decreased cardiomyocyte apoptosis, but the autophagy inhibitor 3-MA decreased autophagy and increased apoptosis at 3 h after exposure to hypoxia and H2O2. Pim1 levels in NRVMs increased at 3 h and decreased gradually after exposure to hypoxia and H2O2. Pim1 overexpression enhanced autophagy and decreased apoptosis. Pim1-induced promotion of autophagy is partly the result of activation of the AMPK/mTOR/ATG5 pathway after exposure to hypoxia and H2O2. Conclusion: Our results revealed that Pim1 overexpression prevented NRVMs from apoptosis via upregulating autophagy after exposure to hypoxia and oxidative stress, partly through activation of the AMPK/mTOR/ATG5 autophagy pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.