The corrosion of reinforcement induced by chloride ions is one of the most significant causes of durability deterioration for reinforced concrete (RC) buildings. The concrete material factors, including the water-to-cement ratio (w/c) of concrete, as well as the content, shape, particle grading, and random distribution of coarse aggregate embedded in mortar, have a marked effect on chloride transport performance within concrete. However, comprehensive consideration for the effects of both w/c and coarse aggregate performances on chloride diffusion characteristics in concrete is scarce, especially regarding the chloride diffusion model of concrete. In this paper, an indoor exposure experiment exploring chloride ions intruding into mortar and concrete specimens with w/c = 0.4, 0.5 and 0.6 was carried out, in order to acquire the chloride diffusion parameters for concrete three-phases composites. Based on the numerical algorithm of random generation and placement of two-dimensional random convex polygon coarse aggregate, mesoscopic numerical models for concrete, considering various coarse aggregate contents as well as grading, were established. Using the numerical simulation method of finite element analysis for chloride transport in cement-based materials, which can replace some of the exposure tests, the influences of w/c, coarse aggregate content and grading on chloride diffusion performance in concrete mesoscopic models were systematically probed. According to the Fick’s second law, a chloride diffusion model by the consideration of w/c, volume fraction of coarse aggregate (VFCA), and maximum size of coarse aggregate (MSCA) was developed to assess the chloride concentration profiles in concrete under arbitrary w/c, coarse aggregate content, and coarse aggregate grading conditions. Certainly, the precision accuracy for this proposed chloride diffusion model was validated. The research results can provide theoretical support for chloride erosion behavior and structural durability assessment of concrete with different mix proportions.
Soda residue soil (SRS) is a man-made engineering foundation soil formed by soda residue; it is mainly distributed in coastal areas in China. SRS is rich in a variety of corrosive salts, among which the concentrations of chloride ions are about 2–3 times that of seawater. These highly concentrated chloride ions migrate and diffuse in reinforced concrete (RC) structures built on coastal SRS through multiple transport mechanisms. However, current research on the durability of RC structures exposed to the coastal SRS environment has not led to the publication of any reports in the literature. SRS may be classified by analyzing the quantitative relationships among the corrosive ions it contains. In this paper, the deterioration of RC structures due to the corrosive saline-soil environment in China is discussed, and advances in RC structure durability under such circumstances are reviewed. Our findings show that a corrosive environment, especially when this is a result of coastal SRS, has a significant influence on the deterioration of RC structures, greatly threatening such buildings. A series of effective measures for enhancing the durability of RC structures in saline soil, including improvements in concrete strength, reductions in the water–binder ratio, the addition of mineral admixtures and fiber-reinforcing agents, etc., could provide a vital foundation for enhancing the durability of RC structures which are at risk due to coastal SRS. Vital issues that must be investigated regarding the durability of RC structures are proposed, including the transport mechanism and a prediction model of corrosive ions, dominated by chloride ions (Cl−), in SRS and RC structures, the deterioration mechanism of RC materials, a long-term performance deduction process of RC components, durability design theory, and effective performance enhancement measures. The findings of this paper provide some clear exploration directions for the development of basic theories regarding RC structure durability in coastal SRS environments and go some way to making up for the research gap regarding RC structure durability under corrosive soil environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.