Background Sarcopenia and osteoporosis frequently co‐occur in the elderly and have common pathophysiological determinants. Slit guidance ligand 3 (SLIT3) has been recently discovered as a novel therapeutic factor against osteoporosis, and a SLIT3 fragment containing the second leucine‐rich repeat domain (LRRD2) had a therapeutic efficacy against osteoporosis. However, a role of SLIT3 in the skeletal muscle is unknown. Methods Skeletal muscle mass, strength, and/or physical activity were evaluated in Slit3−/−, ovariectomized, and aged mice, based on the measurements of muscle weight and grip strength, Kondziella's inverted hanging test, and/or wheel‐running test. Skeletal muscles were also histologically evaluated by haematoxylin and eosin staining and/or immunofluorescence. The ovariectomized and aged mice were intravenously injected with recombinant SLIT3 LRRD2 for 4 weeks. C2C12 cells were used to know cellular effects of SLIT3, such as in vitro myogenesis, fusion, cell viability, and proliferation, and also used to evaluate its molecular mechanisms by immunocytochemistry, immunoprecipitation, western blotting, real‐time PCR, siRNA transfection, and receptor‐ligand binding ELISA. Results Slit3‐deficient mice exhibited decreased skeletal muscle mass, muscle strength, and physical activity. The relative masses of gastrocnemius and soleus were lower in the Slit3−/− mice (0.580 ± 0.039% and 0.033 ± 0.003%, respectively) than those in the WT littermates (0.622 ± 0.043% and 0.038 ± 0.003%, respectively) (all, P < 0.05). Gastrocnemius of Slit3−/− mice showed the reduced number of Type I and Type IIa fibres (all, P < 0.05), but not of Type IIb and Type IIx fibres. SLIT3 activated β‐catenin signalling by promoting its release from M‐cadherin, thereby increasing myogenin expression to stimulate myoblast differentiation. In vitro experiments involving ROBO2 expression, knockdown, and interaction with SLIT3 indicated that ROBO2 functions as a SLIT3 receptor to aid myoblast differentiation. SLIT3 LRRD2 dissociated M‐cadherin‐bound β‐catenin and up‐regulated myogenin expression to increase myoblast differentiation, in a manner similar to full‐length SLIT3. Systemic treatment with SLIT3 LRRD2 increased skeletal muscle mass in both ovariectomized and aged mice (all, P < 0.05). The relative masses of gastrocnemius and soleus were higher in the treated aged mice (0.548 ± 0.045% and 0.033 ± 0.005%, respectively) than in the untreated aged mice (0.508 ± 0.016% and 0.028 ± 0.003%, respectively) (all, P < 0.05). SLIT3 LRRD2 treatment increased the hanging duration of the aged mice by approximately 1.7‐fold (P < 0.05). Conclusions SLIT3 plays a sarcoprotective role by activating β‐catenin signalling. SLIT3 LRRD2 can potentially be used as a therapeutic agent against muscle loss.
As populations continue to age worldwide, sarcopenic obesity has heightened interest due to its medical importance. Although much evidence now indicates that n-3 fatty acids (FAs) may have beneficial effects on body composition including fat and muscle, their exact mechanisms have not yet been elucidated. Because free FA receptor 4 (FFA4) has been reported to be a receptor for n-3 FAs, we hypothesized that the protective role of n-3 FAs on body composition could be mediated by FFA4. To test this possibility, we generated mice overexpressing n-3 FAs but lacking FFA4 by crossing fat-1 transgenic (fat-1 ) and FFA4 knockout (Ffar4) mice. Because fat-1 mice, in which n-6 is endogenously converted into n-3 FAs, contain high n-3 FA levels, they could be a good animal model for studying the effects of n-3 FAs in vivo. Male and female littermates were included in high-fat-diet- (HFD) and ovariectomy-induced models, respectively. In the HFD model, male fat-1 mice had a lower percentage of fat mass and a higher percentage of lean mass than their wild-type littermates only when they had the Ffar4 not the Ffar4 background. Female fat-1 mice showed less increase of fat mass percentage and less decrease of lean mass percentage after ovariectomy than wild-type littermates. However, these effects on body composition were attenuated in the Ffar4 background. Taken together, our results indicate that the beneficial effects of n-3 FAs on body composition were mediated by FFA4 and thus suggest that FFA4 may be a potential therapeutic target for modulating sarcopenic obesity.
Exerkines are soluble factors secreted by exercised muscles, mimicking the effects of exercise in various organs, including the muscle itself. Lumican is reportedly secreted from muscles; however, its roles in skeletal muscle remain unknown. Herein, we found that lumican mRNA expression in the extensor digitorum longus was significantly higher in exercised mice than in unloading mice, and lumican stimulated myogenesis in vitro. Additionally, lumican knockdown significantly decreased muscle mass and cross-sectional area (CSA) of the muscle fiber in the gastrocnemius muscle of exercised mice. Lumican upregulated phosphorylation of p38 mitogen-activated protein kinase (MAPK) and a p38 inhibitor near completely blocked lumican-stimulated myogenesis. Inhibitors for integrin α2β1 and integrin ανβ3 also prevented lumican-stimulated myogenesis. Systemic lumican treatment, administered via the tail vein for 4 weeks, significantly increased relative muscle masses by 36.1% in ovariectomized mice. In addition, intramuscular lumican injection into unloaded muscles for 2 weeks significantly increased muscle mass by 8.5%. Both intravenous and intramuscular lumican treatment significantly increased muscle CSA. Our in vitro and in vivo experiments indicate that lumican is a muscle-secreted exerkine that affords protection against muscle loss by activating p38 MAPK via integrin receptors.
Background Sarcopenia is characterized by a progressive decrease in skeletal muscle mass and function with age. Given that sarcopenia is associated with various metabolic disorders, effective metabolic biomarkers for its early detection are required. We aimed to investigate the metabolic biomarkers related to sarcopenia in elderly men and perform experimental studies using metabolomics. Methods Plasma metabolites from 142 elderly men, comprising a sarcopenia group and an age-matched control group, were measured using global metabolome profiling. Muscle and plasma samples from an aging mouse model of sarcopenia, as well as cell media and cell lysates during myoblast differentiation, were analysed based on targeted metabolome profiling. Based on these experimental results, fatty acid amides were quantified from human plasma as well as human muscle tissues. The association of fatty acid amide levels with sarcopenia parameters was evaluated. Results Global metabolome profiling showed that fatty acid amide levels were significantly different in the plasma of elderly men with sarcopenia (all Ps < 0.01). Consistent with these results in human plasma, targeted metabolome profiling in an aging mouse model of sarcopenia showed decreased levels of fatty acid amides in plasma but not in muscle tissue. In addition, the levels of fatty acid amides increased in cell lysates during muscle cell differentiation. Targeted metabolome profiling in men showed decreased docosahexaenoic acid ethanolamide (DHA EA) levels in the plasma (P = 0.016) but not in the muscle of men with sarcopenia. DHA EA level was positively correlated with sarcopenia parameters such as skeletal muscle mass index (SMI) and handgrip strength (HGS) (P = 0.001, P = 0.001, respectively). The area under the receiver-operating characteristic curve (AUC) for DHA EA level ≤ 4.60 fmol/μL for sarcopenia was 0.618 (95% confidence interval [CI]: 0.532-0.698). DHA EA level ≤ 4.60 fmol/μL was associated with a significantly greater likelihood of sarcopenia (odds ratio [OR]: 2.11, 95% CI: 1.03-4.30), independent of HGS. The addition of DHA EA level to age and HGS significantly improved the AUC from 0.620 to 0.691 (P = 0.0497). Conclusions Our study demonstrated that fatty acid amides are potential circulating biomarkers in elderly men with sarcopenia. DHA EA, in particular, strongly related to muscle mass and strength, can be a key metabolite to become a reliable metabolic biomarker for sarcopenia. Further research on fatty acid amides will provide insights into the metabolomic changes relevant to sarcopenia from an aging perspective.
A new target that stimulates bone formation is needed to overcome limitations of current anti‐osteoporotic drugs. Myokines, factors secreted from muscles, may modulate it. In this study, we investigated the role of aortic carboxypeptidase‐like protein (ACLP), which is highly expressed in skeletal muscles, on bone formation. MC3T3‐E1 cells and/or calvaria osteoblasts were treated with recombinant N‐terminal mouse ACLP containing a signal peptide [rmACLP (N)]. The expression and secretion of ACLP were higher in skeletal muscle and differentiated myotube than in other tissues and undifferentiated myoblasts, respectively. rmACLP (N) increased bone formation, ALP activity, and phosphorylated p38 mitogen‐activated protein (MAP) kinase in osteoblasts; reversal was achieved by pre‐treatment with a TGF‐β receptor inhibitor. Under H2O2 treatment, rmACLP (N) increased osteoblast survival, phosphorylated p38 MAP kinase, and the nuclear translocation of FoxO3a in osteoblasts. H2O2 treatment caused rmACLP (N) to suppress its apoptotic, oxidative, and caspase‐9 activities. rmACLP (N)‐stimulated osteoblast survival was reversed by pre‐treatment with a p38 inhibitor, a TGF‐β‐receptor II blocking antibody, and a FoxO3a shRNA. Conditioned media (CM) from muscle cells stimulated osteoblast survival under H2O2 treatment, in contrast to CM from ACLP knockdown muscle cells. rmACLP (N) increased the expressions of FoxO3a target anti‐oxidant genes such as Sod2, Trx2, and Prx5. In conclusion, ACLP stimulated the differentiation and survival of osteoblasts. This led to the stimulation of bone formation by the activation of p38 MAP kinase and/or FoxO3a via TGF‐β receptors. These findings suggest a novel role for ACLP in bone metabolism as a putative myokine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.