Reperfusion of the ischemic intestine often leads to drive distant organ injury, especially injuries associated with hepatocellular dysfunction. The precise molecular mechanisms and effective multiple organ protection strategies remain to be developed. In the current study, significant remote liver dysfunction was found after 6 hours of reperfusion according to increased histopathological scores, serum lactate dehydrogenase (LDH), alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, as well as enhanced bacterial translocation in a rat intestinal ischemia/reperfusion (I/R) injury model. Moreover, receptor‐interacting protein kinase 1/3 (RIP1/3) and phosphorylated‐MLKL expressions in tissue were greatly elevated, indicating that necroptosis occurred and resulted in acute remote liver function impairment. Inhibiting the necroptotic pathway attenuated HMGB1 cytoplasm translocation and tissue damage. Meanwhile, macrophage‐depletion study demonstrated that Kupffer cells (KCs) are responsible for liver damage. Blocking HMGB1 partially restored the liver function via suppressed hepatocyte necroptosis, tissue inflammation, hepatic KCs, and circulating macrophages M1 polarization. What’s more, HMGB1 neutralization further protects against intestinal I/R‐associated liver damage in microbiota‐depleted rats. Therefore, intestinal I/R is likely associated with acute liver damage due to hepatocyte necroptosis, and which could be ameliorated by Nec‐1 administration and HMGB1 inhibition with the neutralizing antibody and inhibitor. Necroptosis inhibition and HMGB1 neutralization/inhibition, may emerge as effective pharmacological therapies to minimize intestinal I/R‐induced acute remote organ dysfunction.
Influx of activated neutrophils into the lungs is the histopathologic hallmark of acute lung injury (ALI) after intestinal ischemia/reperfusion (I/R). Neutrophils can release DNA and granular proteins to form cytotoxic neutrophil extracellular traps (NETs), which promotes bystander tissue injury. However, whether NETs are responsible for the remote ALI after intestinal I/R and the mechanisms underlying the dissemination of harmful gut-derived mediators to the lungs are unknown. In the C57BL/6J mouse intestinal I/R model, DNase I–mediated degradation and protein arginine deiminase 4 (PAD4) inhibitor–mediated inhibition of NET treatments reduced NET formation, tissue inflammation, and pathological injury in the lung. High-mobility group protein B1 (HMGB1) blocking prevented NET formation and protected against tissue inflammation, as well as reduced cell apoptosis and improved survival rate. Moreover, recombinant human HMGB1 administration further drives NETs and concurrent tissue toxic injury, which in turn can be reversed by neutrophil deletion via anti-Ly6G Ab i.p. injection. Furthermore, global MyD88 deficiency regulated NET formation and alleviated the development of ALI induced by intestinal I/R. Thus, HMGB1 released from necroptotic enterocytes caused ALI after intestinal I/R by inducing NET formation. Targeting NETosis and the HMGB1 pathway might extend effective therapeutic strategies to minimize intestinal I/R-induced ALI.
BACKGROUND: Intestinal ischemia/reperfusion (I/R) challenge often results in gut barrier dysfunction and induces distant organ injury. Dexmedetomidine has been shown to protect intestinal epithelial barrier against I/R attack. The present study aims to investigate the degree to which intestinal I/R attack will contribute to gut-vascular barrier (GVB) damage, and to examine the ability of dexmedetomidine to minimize GVB and liver injuries in mice. METHODS: In vivo, intestinal ischemic challenge was induced in mice by clamping the superior mesenteric artery for 45 minutes. After clamping, the mice were subjected to reperfusion for either 2, 4, 6, or 12 hours. Intraperitoneal injection of dexmedetomidine 15, 20, or 25 μg•kg -1 was performed intermittently at the phase of reperfusion. For the in vitro experiments, the challenge of oxygen-glucose deprivation/reoxygenation (OGD/R) was established in cultured vascular endothelial cells, and dexmedetomidine (1 nM) was used to treat the cells for 24 hours. Moreover, in vivo and in vitro, SKL2001 (a specific agonist of β-catenin) or XAV939 (a specific inhibitor of β-catenin) was applied to determine the role of β-catenin in the impacts provided by dexmedetomidine. RESULTS: The attack of intestinal I/R induced GVB damage. The greatest level of damage was observed at 4 hours after intestinal reperfusion. There was a significant increase in plasmalemma vesicle-associated protein-1 (PV1, a specific biomarker for endothelial permeability) expression (5.477 ± 0.718 vs 1.000 ± 0.149; P < .001), and increased translocation of intestinal macromolecules and bacteria to blood and liver tissues was detected (all P < .001). Liver damages were observed. There were significant increases in histopathological scores, serum parameters, and inflammatory factors (all P < .001). Dexmedetomidine 20 μg•kg -1 reduced PV1 expression (0.466 ± 0.072 vs 1.000 ± 0.098; P < .001) and subsequent liver damages (all P < .01). In vitro, dexmedetomidine significantly improved vascular endothelial cell survival (79.387 ± 6.447% vs 50.535 ± 1.766%; P < .001) and increased the productions of tight junction protein and adherent junction protein (all P < .01) following OGD/R. Importantly, in cultured cells and in mice, β-catenin expression significantly decreased (both P < .001) following challenge. Dexmedetomidine or SKL2001 upregulated β-catenin expression and produced protective effects (all P < .01). However, XAV939 completely eliminated the protective effects of dexmedetomidine on GVB (all P < .001).
Although previous studies have shown that certain factors interfere with the sensitivity of propofol, the mechanisms for interindividual variability in response to propofol remain unclear. This study aimed to screen the metabolites to predict patients’ sensitivity to propofol and to identify metabolic pathways to explore possible mechanisms associated with propofol resistance. Sera from 40 female patients undergoing elective hysteroscopic surgery in a prospective cohort propofol study were obtained before the administration of propofol. The patients’ responsiveness to propofol was differentiated based on propofol effect-site concentration. Serum samples from two sets, a discovery set (n = 24) and an independent validation set (n = 16), were analyzed using ultraperformance liquid chromatography coupled with mass spectrometry based untargeted metabolomics. In the discovery set, 494 differential metabolites were screened out, and then 391 potential candidate biomarkers with the area under receiver operating characteristic curve >0.80 were selected. Pathway analysis showed that the pathway of glycerophospholipid metabolism was the most influential pathway. In the independent validation set, six potential biomarkers enabled the discrimination of poor responders from good and intermediate responders, which might be applied to predict propofol sensitivity. The mass spectrometry data are available via MetaboLights () with the identifier MTBLS2311.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.