Polyketone fiber is considered as a reinforcement of the mechanical rubber goods (MRG) such as tires, automobile hoses, and belts because of its high strength and modulus. In order to apply it to those purposes, the high adhesion of fiber/rubber interface and good sustainability to aging conditions are very important. In this study, polyketone fiber reinforced natural rubber composites were prepared and they were subjected to thermal and humidity aging, to assess the changes of the interfacial adhesion and material properties. Also, the effect of adhesive primer treatment, based on the resorcinol formaldehyde resin and latex (RFL), of polyketone fiber for high interfacial adhesion was evaluated. Morphological and property changes of the rubber composites were analyzed by using various instrumental analyses. As a result, the rubber composite was aged largely by thermal aging at high temperature rather than humidity aging condition. Interfacial adhesion of the polyketone/NR composites was improved by the primer treatment and its effect was maintained in aging conditions.
요 약Polycarbonate/Acrylonitrile-Butadiene-Styrene(PC/ABS) 블렌드의 분해효과를 조사하기 위해 고전단 압출 성형기의 스크류 회전속도와 전단시간의 함수로 PC/ABS의 물성변화에 영향을 미치는 산화방지제의 효과를 연구하였다. 인산계 산화방지제로 Tris-(2,4-di-tert-butyl-phenyl phosphate) (이후 A1로 명명) and Bis(2,4-dicumylphenyl) pentaerythritol diphosphite(이후 A3로 명명)가 사용되었고, 페놀계 산화방지제는 Octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ( Abstract − The effects of antioxidants on the properties of Polycarbonate/Acrylonitrile-Butadiene-Styrene(PC/ABS) blends were studied for the functions of the screw speed and loaded duration of high shear rate processing in order to investigate the degradation for PC/ABS blends. Tris-(2,4-di-tert-butyl-phenyl phosphate) (A1) and Bis(2,4-dicumylphe- †
− The PC/ABS blends were manufactured with high shear rate processing. Changes of the blend morphology were analyzed according to the screw speed and processing time. To find optimal conditions of the high shear rate processing of the PC/ABS blend, blend morphology and size of the dispersed phase, ABS, were observed with a SEM. Also, tensile properties of the PC/ABS blends were measured to investigate the effect of the high shear rate process with the screw speed of 500 rpm to 3000 rpm for processing times of 10s to 40s. Especially, to observe the dispersed phase of the PC/ABS blend clearly, fracture surfaces of the PC/ABS blend were etched with chromic acid solution. As screw †
The effects of high shear rate processing on the thermal properties of PC/ABS blends were studied. It was executed by the high shear processing machine (NHSS2-28) at the varied conditions of screw speeds and loaded duration. After the samples were processed with NHSS2-28, the T g s were shifted from 143 to 133 o C, and the behavior of degradation determined by TGA showed two distinct steps before high shear rate processing, while it showed a straight line after the processing. In order to provide the reasons of the properties, it was showen by SEM and UTM that the droplet sizes morphologically decreased after the processing, and the elongations decreased slightly until 1000 rpm of screw speed and then sharply decreased, according to the conditions of high shear rate processing. Therefore, it can be confirmed that T g ,s of PC/ABS blends were considerably shifted under an appropriate high shear rate condition, and rapidly dropped, so that blends degraded above the condition, due to stress-induced degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.