Islam and the Muslim population are often the source of much misunderstanding and media-influenced misconceptions. Muslim patients who enter the healthcare environment are often weak and likely to experience feelings of vulnerability. Because of the complex and interwoven nature of culture and religion in a person's identity, it is important to consider patient belief systems and values when designing a patient's immediate environment. Through an exploration of literature related to culture and diversity and the beliefs and value system of the Muslim population, the authors were able to identify flexible design initiatives that could accommodate an array of cultural and spiritual practices. Islam and the Muslim population were chosen as the points of reference for this study because of the strong influence of the religion on the culture, and because of the many nuances that differ from the dominant culture within the United States. From these points of reference, a hypothetical design was developed for a patient room that considers differing notions of privacy, alternatives for cultural and religious practices, and ways to include symbolic meaning derived from attributes such as color.
Nucleic acid (NA) computation has been widely developed in the past years to solve kinds of logic and mathematic issues in both information technologies and biomedical analysis. However, the difficulty to integrate non‐NA molecules limits its power as a universal platform for molecular computation. Here, we report a versatile prototype of hybridized computation integrated with both nucleic acids and non‐NA molecules. Employing the conformationally controlled ligand converters, we demonstrate that non‐NA molecules, including both small molecules and proteins, can be computed as nucleic acid strands to construct the circuitry with increased complexity and scalability, and can be even programmed to solve arithmetical calculations within the computational nucleic acid system. This study opens a new door for molecular computation in which all‐NA circuits can be expanded with integration of various ligands, and meanwhile, ligands can be precisely programmed by the nuclei acid computation.
Dynamic regulation of nucleic acid hybridization is fundamental for switchable nanostructures and controllable functionalities of nucleic acids in both material developments and biological regulations. In this work, we report a ligand-invasion pathway to regulate DNA hybridization based on host–guest interactions. We propose a concept of recognition handle as the ligand binding site to disrupt Watson–Crick base pairs and induce the direct dissociation of DNA duplex structures. Taking cucurbit[7]uril as the invading ligand and its guest molecules that are integrated into the nucleobase as recognition handles, we successfully achieve orthogonal and reversible manipulation of DNA duplex dissociation and recovery. Moreover, we further apply this approach of ligand-controlled nucleic acid hybridization for functional regulations of both the RNA-cleaving DNAzyme in test tubes and the antisense oligonucleotide in living cells. This ligand-invasion strategy establishes a general pathway toward dynamic control of nucleic acid structures and functionalities by supramolecular interactions.
C3F8 tamponade combined with laser photocoagulation could be an alternative treatment for highly myopic foveoschisis.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.