High sPostn levels were an independent predictor of femoral neck BMD in older women presenting with an acute hip fracture. Increased sPostn levels during early healing phase may imply that Postn play a role in bone repair.
BACKGROUND: Automatic segmentation of individual tooth root is a key technology for the reconstruction of the three-dimensional dental model from Cone Beam Computed Tomography (CBCT) images, which is of great significance for the orthodontic, implant and other dental diagnosis and treatment planning. OBJECTIVES: Currently, tooth root segmentation is mainly done manually because of the similar gray of the tooth root and the alveolar bone from CBCT images. This study aims to explore the automatic tooth root segmentation algorithm of CBCT axial image sequence based on deep learning. METHODS: We proposed a new automatic tooth root segmentation method based on the deep learning U-net with AGs. Since CBCT sequence has a strong correlation between adjacent slices, a Recurrent neural network (RNN) was applied to extract the intra-slice and inter-slice contexts. To develop and test this new method for automatic segmentation of tooth roots using CBCT images, 24 sets of CBCT sequences containing 1160 images and 5 sets of CBCT sequences containing 361 images were used to train and test the network, respectively. RESULTS: Applying to the testing dataset, the segmentation accuracy measured by the intersection over union (IOU), dice similarity coefficient (DICE), average precision rate (APR), average recall rate (ARR), and average symmetrical surface distance (ASSD) are 0.914, 0.955, 95.8% , 95.3% , 0.145 mm, respectively. CONCLUSIONS: The study demonstrates that the new method combining attention U-net with RNN yields the promising results of automatic tooth roots segmentation, which has potential to help improve the segmentation efficiency and accuracy in future clinical practice.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.