Neuronal mitochondrial dysfunction caused by excessive reactive oxygen species (ROS) is an early event of sporadic Alzheimer's disease (AD), and considered to be a key pathologic factor in the progression of AD. The targeted delivery of the antioxidants to mitochondria of injured neurons in brain is a promising therapeutic strategy for AD. A safe and effective drug delivery system (DDS) which is able to cross the blood-brain barrier (BBB) and target neuronal mitochondria is necessary. Recently, bioactive materials-based DDS has been widely investigated for the treatment of AD. Herein, we developed macrophage (MA) membrane-coated solid lipid nanoparticles (SLNs) by attaching rabies virus glycoprotein (RVG29) and triphenylphosphine cation (TPP) molecules to the surface of MA membrane (RVG/TPP-MASLNs) for functional antioxidant delivery to neuronal mitochondria. According to the results, MA membranes camouflaged the SLNs from being eliminated by RES-rich organs by inheriting the immunological characteristics of macrophages. The unique properties of the DDS after decoration with RVG29 on the surface was demonstrated by the ability to cross the BBB and the selective targeting to neurons. After entering the neurons in CNS, TPP further lead the DDS to mitochondria driven by electric charge. The Genistein (GS)- encapsulated DDS (RVG/TPP-MASLNs-GS) exhibited the most favorable effects on reliveing AD symptoms
in vitro
and
in vivo
by the synergies gained from the combination of MA membranes, RVG29 and TPP. These results demonstrated a promising therapeutic candidate for delaying the progression of AD via neuronal mitochondria-targeted delivery by the designed biomimetic nanosystems.
PurposeWhile the inflammatory cytokine interleukin-18 (IL-18) is known to activate natural killer (NK) cells, its precise role in cancer is controversial. In this study, we investigated the role of tumor-derived IL-18 on peripheral blood NK cells in breast cancer patients.ResultsIn breast cancer cell lines, IL-18 was expressed and secreted in the triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and HCC-70 but not in MCF-7 cells. The immature and non-cytotoxic CD56dimCD16dim/− NK cell fraction was increased following co-culture with MDA-MB-231 cells, and this increase was not observed with tumor cells transfected with siRNA for IL-18 or in MCF-7 cells. In addition, tumor-derived IL-18 increased PD-1 expression on CD56dimCD16dim/− NK cells, although no effect on PD-L1 expression in tumor cells was observed. Among EBC patients, serum IL-18 levels were significantly increased in those with a TNBC subtype compared to levels from patients with other subtypes, and the IL-18 levels were strongly associated with poor survival. Similarly, serum IL-18 and CD56dimCD16dim/− NK cells were also increased in patients with metastatic TNBC who had progressive disease following cytotoxic chemotherapy.Experimental DesignWe performed in vitro experiments in breast cancer cell lines, measured cytokine levels by RT-qPCR, western blot, and ELISA, and analyzed NK cell subsets by flow cytometry. For clinical validation, we collected and analyzed blood sample from patients with early breast cancer (EBC, N = 545) and metastatic breast cancer (MBC, N = 42).ConclusionsOur data revealed that tumor-derived IL-18 is associated with bad prognosis in patients with TNBC. Tumor-derived IL-18 increased the immunosuppressive CD56dimCD16dim/− NK cell fraction and induced PD-1 expression on these NK cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.