The coordinated development of smart cities has become the goal of world urban development, and the railway network plays an important role in this progress. This paper proposes a solution that integrates data acquisition, storage, GIS visualization, deep learning, and statistical correlation analysis to deeply analyze the distribution data of companies collected in the past 40 years in the Yangtze River Delta. Through deep learning, we predict the spatial distribution of the company after the opening of the train stations. Through statistical and correlation analysis of the company’s registered capital and quantity, the urban development relationship under the influence of the opening of the railway is explored. Going forward, the use and application of such analysis can be tested for use and application in the context of other smart cities for specific aspects or scale.
In the research work of the brain-computer interface and the function of human brain work, the state classification of multitask state fMRI data is a problem. The fMRI signal of the human brain is a nonstationary signal with many noise effects and interference. Based on the commonly used nonstationary signal analysis method, Hilbert–Huang transform (HHT), we propose an improved circle-EMD algorithm to suppress the end effect. The algorithm can extract different intrinsic mode functions (IMFs), decompose the fMRI data to filter out low frequency and other redundant noise signals, and more accurately reflect the true characteristics of the original signal. For the filtered fMRI signal, we use three existing different machine learning methods: logistic regression (LR), support vector machine (SVM), and deep neural network (DNN) to achieve effective classification of different task states. The experiment compares the results of these machine learning methods and confirms that the deep neural network has the highest accuracy for task-state fMRI data classification and the effectiveness of the improved circle-EMD algorithm.
With the continuous development of science, more and more research results have proved that machine learning is capable of diagnosing and studying the major depressive disorder (MDD) in the brain. We propose a deep learning network with multibranch and local residual feedback, for four different types of functional magnetic resonance imaging (fMRI) data produced by depressed patients and control people under the condition of listening to positive- and negative-emotions music. We use the large convolution kernel of the same size as the correlation matrix to match the features and obtain the results of feature matching of 264 regions of interest (ROIs). Firstly, four-dimensional fMRI data are used to generate the two-dimensional correlation matrix of one person’s brain based on ROIs and then processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the deep learning model in this paper is compared with support vector machine (SVM), logistic regression (LR), k-nearest neighbor (kNN), a common deep neural network (DNN), and a deep convolutional neural network (CNN) for classification. Finally, we further calculate the matched ROIs from the intermediate results of our deep learning model which can help related fields further explore the pathogeny of depression patients.
In the article titled "In-Depth Analysis of Railway and Company Evolution of Yangtze River Delta with Deep Learning" [1], the contact details for Renzhou Gui were incorrect. e correct contact information is shown above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.