A long-term nationwide nonpoint-source pollution monitoring program was initiated by the Ministry of Environment Republic of Korea (ME) in 2007. Monitoring devices including rain gauges, flow meters, and automatic samplers were installed in monitoring sites to collect dynamic runoff data in 2008-2009. More than 10 rainfall events with three or more antecedent dry days were monitored per year. More than 10 samples were collected and analyzed per event. So far, five land use types (single family, apartments, education facilities, power plants, and other public facilities) have been monitored 23 to 24 times each. Characterization of the runoff from different land use types will aid unit load estimation in Korea and hopefully in other countries with similar land use. The monitoring results will be reported regularly at national and international levels.
The TPLMs is a system to manage the total amount of pollutants discharged from the watershed in order to achieve the target water quality of the river. In this process, the pollutant load can be classified into generation, discharge and delivery load. When using equation 2, the discharge coefficient should be 1. In case of using equation 3, it is considered that the discharge coefficient defined in the Technical Guideline should be applied. The delivery load is calculated as the product of the discharge load and the delivery ratio, and the delivery ratio is defined as the rate at which the pollutant discharged from the watershed reaches a specific point in the stream. In this study, the delivery ratio estimation method proposed by Hwang (2016) was applied to the Yonggang watershed in the Nakdong river. And the input data of QUALKO2 model was generated by using the estimated delivery ratio (equation 3) and the validation study was conducted by comparing with DRave (equation 2). As a result of the study, it is possible to use both the equation 2 and the equation 3, but it is necessary to change the methodology according to the application of the discharge coefficient.
Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.