Childhood neuroblastoma has a remarkable variability in outcome. Age at diagnosis is one of the most important prognostic factors, with children less than 1 year old having favorable outcomes. Here we study single-cell and single-nuclei transcriptomes of neuroblastoma with different clinical risk groups and stages, including healthy adrenal gland. We compare tumor cell populations with embryonic mouse sympatho-adrenal derivatives, and post-natal human adrenal gland. We provide evidence that low and high-risk neuroblastoma have different cell identities, representing two disease entities. Low-risk neuroblastoma presents a transcriptome that resembles sympatho- and chromaffin cells, whereas malignant cells enriched in high-risk neuroblastoma resembles a subtype of TRKB+ cholinergic progenitor population identified in human post-natal gland. Analyses of these populations reveal different gene expression programs for worst and better survival in correlation with age at diagnosis. Our findings reveal two cellular identities and a composition of human neuroblastoma tumors reflecting clinical heterogeneity and outcome.
Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cellintrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. STEM CELLS 2012;30:280-291 Disclosure of potential conflicts of interest is found at the end of this article.
Spermatogenesis is a continuous and highly coordinated process of spermatozoa production. In mice, this process is believed to initiate shortly after birth with the emergence of nascent spermatogonia in the testes. However, because the nascent spermatogonia originated from the gonocytes are morphologically indistinguishable from their predecessors and there is no clear definition for the gonocytes-to-spermatogonia transition (GST), it remains unclear when and how spermatogenesis is initiated in the mouse testes. To address these questions, we characterized the emergence of nascent spermatogonia in ICR mice. We found that GST is initiated in a subset of gonocytes as early as E18.5. These nascent spermatogonia express markers typical of undifferentiated spermatogonia residing in testes of adult mice. In addition to markers expression, we identified FOXO1 nuclear-to-cytoplasmic translocation as a novel feature of GST distinguishing nascent spermatogonia from the gonocytes. Using those criteria, we demonstrated that GST requires FGF signaling. When FGF signaling was inhibited pharmacologically, gonocytes retained nuclear FOXO1 expression, did not express spermatogonial markers and failed to proliferate. We found that FGF signaling acts upstream of GDNF and RA signalings for the activation of the MEK/ERK and PI3K/Akt pathways in germ cells during GST. Taken together, we defined the precise timing of GST and revealed FGF signaling as a master regulator of GST in the perinatal mouse testes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.